1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using System.Text;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.Operators;
|
---|
29 | using HeuristicLab.Functions;
|
---|
30 | using HeuristicLab.DataAnalysis;
|
---|
31 |
|
---|
32 | namespace HeuristicLab.StructureIdentification {
|
---|
33 | public abstract class GPEvaluatorBase : OperatorBase {
|
---|
34 | private IEvaluator evaluator;
|
---|
35 | private int targetVariable;
|
---|
36 | private int start;
|
---|
37 | private int end;
|
---|
38 | private bool useEstimatedValues;
|
---|
39 | private double[] backupValues;
|
---|
40 | private int evaluatedSamples;
|
---|
41 | private double estimatedValueMax;
|
---|
42 | private double estimatedValueMin;
|
---|
43 | private int treeSize;
|
---|
44 | private double totalEvaluatedNodes;
|
---|
45 | protected Dataset dataset;
|
---|
46 | private double targetMean;
|
---|
47 | protected double TargetMean { get { return targetMean; } }
|
---|
48 |
|
---|
49 | public GPEvaluatorBase()
|
---|
50 | : base() {
|
---|
51 | AddVariableInfo(new VariableInfo("FunctionTree", "The function tree that should be evaluated", typeof(IFunctionTree), VariableKind.In));
|
---|
52 | AddVariableInfo(new VariableInfo("TreeSize", "Size (number of nodes) of the tree to evaluate", typeof(IntData), VariableKind.In));
|
---|
53 | AddVariableInfo(new VariableInfo("Dataset", "Dataset with all samples on which to apply the function", typeof(Dataset), VariableKind.In));
|
---|
54 | AddVariableInfo(new VariableInfo("TargetVariable", "Index of the column of the dataset that holds the target variable", typeof(IntData), VariableKind.In));
|
---|
55 | AddVariableInfo(new VariableInfo("PunishmentFactor", "Punishment factor for invalid estimations", typeof(DoubleData), VariableKind.In));
|
---|
56 | AddVariableInfo(new VariableInfo("TotalEvaluatedNodes", "Number of evaluated nodes", typeof(DoubleData), VariableKind.In | VariableKind.Out));
|
---|
57 | AddVariableInfo(new VariableInfo("SamplesStart", "Start index of samples in dataset to evaluate", typeof(IntData), VariableKind.In));
|
---|
58 | AddVariableInfo(new VariableInfo("SamplesEnd", "End index of samples in dataset to evaluate", typeof(IntData), VariableKind.In));
|
---|
59 | AddVariableInfo(new VariableInfo("UseEstimatedTargetValue", "Wether to use the original (measured) or the estimated (calculated) value for the targat variable when doing autoregressive modelling", typeof(BoolData), VariableKind.In));
|
---|
60 | }
|
---|
61 |
|
---|
62 | public override IOperation Apply(IScope scope) {
|
---|
63 | // get all variable values
|
---|
64 | targetVariable = GetVariableValue<IntData>("TargetVariable", scope, true).Data;
|
---|
65 | dataset = GetVariableValue<Dataset>("Dataset", scope, true);
|
---|
66 | IFunctionTree functionTree = GetVariableValue<IFunctionTree>("FunctionTree", scope, true);
|
---|
67 | double maximumPunishment = GetVariableValue<DoubleData>("PunishmentFactor", scope, true).Data * dataset.GetRange(targetVariable);
|
---|
68 | treeSize = scope.GetVariableValue<IntData>("TreeSize", false).Data;
|
---|
69 | totalEvaluatedNodes = scope.GetVariableValue<DoubleData>("TotalEvaluatedNodes", true).Data;
|
---|
70 | int start = GetVariableValue<IntData>("SamplesStart", scope, true).Data;
|
---|
71 | int end = GetVariableValue<IntData>("SamplesEnd", scope, true).Data;
|
---|
72 | useEstimatedValues = GetVariableValue<BoolData>("UseEstimatedTargetValue", scope, true).Data;
|
---|
73 | // prepare for autoregressive modelling by saving the original values of the target-variable to a backup array
|
---|
74 | if(useEstimatedValues &&
|
---|
75 | (backupValues == null || start != this.start || end != this.end)) {
|
---|
76 | this.start = start;
|
---|
77 | this.end = end;
|
---|
78 | backupValues = new double[end - start];
|
---|
79 | for(int i = start; i < end; i++) {
|
---|
80 | backupValues[i - start] = dataset.GetValue(i, targetVariable);
|
---|
81 | }
|
---|
82 | }
|
---|
83 | // get the mean of the values of the target variable to determin the max and min bounds of the estimated value
|
---|
84 | targetMean = dataset.GetMean(targetVariable, start, end - 1);
|
---|
85 | estimatedValueMin = targetMean - maximumPunishment;
|
---|
86 | estimatedValueMax = targetMean + maximumPunishment;
|
---|
87 |
|
---|
88 | // initialize and reset the evaluator
|
---|
89 | if(evaluator == null) evaluator = functionTree.CreateEvaluator();
|
---|
90 | evaluator.ResetEvaluator(functionTree, dataset);
|
---|
91 | evaluatedSamples = 0;
|
---|
92 |
|
---|
93 | Evaluate(start, end);
|
---|
94 |
|
---|
95 | // restore the values of the target variable from the backup array if necessary
|
---|
96 | if(useEstimatedValues) RestoreDataset(dataset, targetVariable, start, end);
|
---|
97 | // update the value of total evaluated nodes
|
---|
98 | scope.GetVariableValue<DoubleData>("TotalEvaluatedNodes", true).Data = totalEvaluatedNodes + treeSize * evaluatedSamples;
|
---|
99 | return null;
|
---|
100 | }
|
---|
101 |
|
---|
102 | private void RestoreDataset(Dataset dataset, int targetVariable, int from, int to) {
|
---|
103 | for(int i = from; i < to; i++) {
|
---|
104 | dataset.SetValue(i, targetVariable, backupValues[i - from]);
|
---|
105 | }
|
---|
106 | }
|
---|
107 |
|
---|
108 | public abstract void Evaluate(int start, int end);
|
---|
109 |
|
---|
110 | public void SetOriginalValue(int sample, double value) {
|
---|
111 | if(useEstimatedValues) {
|
---|
112 | dataset.SetValue(sample, targetVariable, value);
|
---|
113 | }
|
---|
114 | }
|
---|
115 |
|
---|
116 | public double GetOriginalValue(int sample) {
|
---|
117 | return dataset.GetValue(sample, targetVariable);
|
---|
118 | }
|
---|
119 |
|
---|
120 | public double GetEstimatedValue(int sample) {
|
---|
121 | evaluatedSamples++;
|
---|
122 | double estimated = evaluator.Evaluate(sample);
|
---|
123 | if(double.IsNaN(estimated) || double.IsInfinity(estimated)) {
|
---|
124 | estimated = estimatedValueMax;
|
---|
125 | } else if(estimated > estimatedValueMax) {
|
---|
126 | estimated = estimatedValueMax;
|
---|
127 | } else if(estimated < estimatedValueMin) {
|
---|
128 | estimated = estimatedValueMin;
|
---|
129 | }
|
---|
130 | return estimated;
|
---|
131 | }
|
---|
132 | }
|
---|
133 | }
|
---|