1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Text;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Evolutionary;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 |
|
---|
29 | namespace HeuristicLab.RealVector {
|
---|
30 | public class BlendAlphaBetaCrossover : CrossoverBase {
|
---|
31 | public override string Description {
|
---|
32 | get { return
|
---|
33 | @"Blend alpha-beta crossover for real vectors. Creates a new offspring by selecting a random value from the interval between the two alleles of the parent solutions. The interval is increased in both directions as follows: Into the direction of the 'better' solution by the factor alpha, into the direction of the 'worse' solution by the factor beta.
|
---|
34 | Please use the operator BoundsChecker if necessary.";
|
---|
35 | }
|
---|
36 | }
|
---|
37 |
|
---|
38 | public BlendAlphaBetaCrossover()
|
---|
39 | : base() {
|
---|
40 | AddVariableInfo(new VariableInfo("Maximization", "Maximization problem", typeof(BoolData), VariableKind.In));
|
---|
41 | AddVariableInfo(new VariableInfo("Quality", "Quality value", typeof(DoubleData), VariableKind.In));
|
---|
42 | AddVariableInfo(new VariableInfo("RealVector", "Parent and child real vector", typeof(DoubleArrayData), VariableKind.In | VariableKind.New));
|
---|
43 | VariableInfo alphaVarInfo = new VariableInfo("Alpha", "Value for alpha", typeof(DoubleData), VariableKind.In);
|
---|
44 | alphaVarInfo.Local = true;
|
---|
45 | AddVariableInfo(alphaVarInfo);
|
---|
46 | AddVariable(new Variable("Alpha", new DoubleData(0.75)));
|
---|
47 | VariableInfo betaVarInfo = new VariableInfo("Beta", "Value for beta", typeof(DoubleData), VariableKind.In);
|
---|
48 | betaVarInfo.Local = true;
|
---|
49 | AddVariableInfo(betaVarInfo);
|
---|
50 | AddVariable(new Variable("Beta", new DoubleData(0.25)));
|
---|
51 | }
|
---|
52 |
|
---|
53 | public static double[] Apply(IRandom random, bool maximization, double[] parent1, double quality1, double[] parent2, double quality2, double alpha, double beta) {
|
---|
54 | int length = parent1.Length;
|
---|
55 | double[] result = new double[length];
|
---|
56 |
|
---|
57 | for (int i = 0; i < length; i++) {
|
---|
58 | double interval = Math.Abs(parent1[i] - parent2[i]);
|
---|
59 |
|
---|
60 | if ((maximization && (quality1 > quality2)) || ((!maximization) && (quality1 < quality2))) {
|
---|
61 | result[i] = SelectFromInterval(random, interval, parent1[i], parent2[i], alpha, beta);
|
---|
62 | } else {
|
---|
63 | result[i] = SelectFromInterval(random, interval, parent2[i], parent1[i], alpha, beta);
|
---|
64 | }
|
---|
65 | }
|
---|
66 | return result;
|
---|
67 | }
|
---|
68 |
|
---|
69 | private static double SelectFromInterval(IRandom random, double interval, double val1, double val2, double alpha, double beta) {
|
---|
70 | double resMin = 0;
|
---|
71 | double resMax = 0;
|
---|
72 |
|
---|
73 | if (val1 <= val2) {
|
---|
74 | resMin = val1 - interval * alpha;
|
---|
75 | resMax = val2 + interval * beta;
|
---|
76 | } else {
|
---|
77 | resMin = val2 - interval * beta;
|
---|
78 | resMax = val1 + interval * alpha;
|
---|
79 | }
|
---|
80 |
|
---|
81 | return SelectRandomFromInterval(random, resMin, resMax);
|
---|
82 | }
|
---|
83 |
|
---|
84 | private static double SelectRandomFromInterval(IRandom random, double resMin, double resMax) {
|
---|
85 | return resMin + random.NextDouble() * Math.Abs(resMax - resMin);
|
---|
86 | }
|
---|
87 |
|
---|
88 | protected sealed override void Cross(IScope scope, IRandom random, IScope parent1, IScope parent2, IScope child) {
|
---|
89 | bool maximization = GetVariableValue<BoolData>("Maximization", scope, true).Data;
|
---|
90 | DoubleArrayData vector1 = parent1.GetVariableValue<DoubleArrayData>("RealVector", false);
|
---|
91 | DoubleData quality1 = parent1.GetVariableValue<DoubleData>("Quality", false);
|
---|
92 | DoubleArrayData vector2 = parent2.GetVariableValue<DoubleArrayData>("RealVector", false);
|
---|
93 | DoubleData quality2 = parent2.GetVariableValue<DoubleData>("Quality", false);
|
---|
94 | double alpha = GetVariableValue<DoubleData>("Alpha", scope, true).Data;
|
---|
95 | double beta = GetVariableValue<DoubleData>("Beta", scope, true).Data;
|
---|
96 |
|
---|
97 | if (vector1.Data.Length != vector2.Data.Length) throw new InvalidOperationException("Cannot apply crossover to real vectors of different length.");
|
---|
98 |
|
---|
99 | double[] result = Apply(random, maximization, vector1.Data, quality1.Data, vector2.Data, quality2.Data, alpha, beta);
|
---|
100 | child.AddVariable(new Variable(child.TranslateName("RealVector"), new DoubleArrayData(result)));
|
---|
101 | }
|
---|
102 | }
|
---|
103 | }
|
---|