Free cookie consent management tool by TermsFeed Policy Generator

source: branches/3.0/sources/HeuristicLab.StructureIdentification/Evaluation/VarianceAccountedForEvaluator.cs @ 10207

Last change on this file since 10207 was 128, checked in by gkronber, 17 years ago
  • created abstract base class for GP evaluators
  • created a version of MSEEvaluator that implements an early stopping criterion (to be combined with offspring selection)

(ticket #29)

File size: 3.4 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using System.Text;
26using HeuristicLab.Core;
27using HeuristicLab.Data;
28using HeuristicLab.Operators;
29using HeuristicLab.DataAnalysis;
30using HeuristicLab.Functions;
31
32namespace HeuristicLab.StructureIdentification {
33  public class VarianceAccountedForEvaluator : GPEvaluatorBase {
34    public override string Description {
35      get {
36        return @"Evaluates 'OperatorTree' for all samples of 'DataSet' and calculates
37the variance-accounted-for quality measure for the estimated values vs. the real values of 'TargetVariable'.
38
39The Variance Accounted For (VAF) function is computed as
40VAF(y,y') = ( 1 - var(y-y')/var(y) )
41where y' denotes the predicted / modelled values for y and var(x) the variance of a signal x.";
42      }
43    }
44
45    /// <summary>
46    /// The Variance Accounted For (VAF) function calculates is computed as
47    /// VAF(y,y') = ( 1 - var(y-y')/var(y) )
48    /// where y' denotes the predicted / modelled values for y and var(x) the variance of a signal x.
49    /// </summary>
50    public VarianceAccountedForEvaluator()
51      : base() {
52    }
53
54
55    public override double Evaluate(IScope scope, IFunction function, int targetVariable, Dataset dataset) {
56      double[] errors = new double[dataset.Rows];
57      double[] originalTargetVariableValues = new double[dataset.Rows];
58      double targetMean = dataset.GetMean(targetVariable);
59      for(int sample = 0; sample < dataset.Rows; sample++) {
60        double estimated = function.Evaluate(dataset, sample);
61        double original = dataset.GetValue(sample, targetVariable);
62        if(!double.IsNaN(original) && !double.IsInfinity(original)) {
63          if(double.IsNaN(estimated) || double.IsInfinity(estimated))
64            estimated = targetMean + maximumPunishment;
65          else if(estimated > (targetMean + maximumPunishment))
66            estimated = targetMean + maximumPunishment;
67          else if(estimated < (targetMean - maximumPunishment))
68            estimated = targetMean - maximumPunishment;
69        }
70
71        errors[sample] = original - estimated;
72        originalTargetVariableValues[sample] = original;
73      }
74
75      double errorsVariance = Statistics.Variance(errors);
76      double originalsVariance = Statistics.Variance(originalTargetVariableValues);
77      double quality = 1 - errorsVariance / originalsVariance;
78
79      if(double.IsNaN(quality) || double.IsInfinity(quality)) {
80        quality = double.MaxValue;
81      }
82      return quality;
83    }
84  }
85}
Note: See TracBrowser for help on using the repository browser.