Free cookie consent management tool by TermsFeed Policy Generator

source: branches/3.0/sources/HeuristicLab.StructureIdentification/Evaluation/MeanSquaredErrorEvaluator.cs

Last change on this file was 128, checked in by gkronber, 17 years ago
  • created abstract base class for GP evaluators
  • created a version of MSEEvaluator that implements an early stopping criterion (to be combined with offspring selection)

(ticket #29)

File size: 2.6 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using System.Text;
26using HeuristicLab.Core;
27using HeuristicLab.Data;
28using HeuristicLab.Operators;
29using HeuristicLab.Functions;
30using HeuristicLab.DataAnalysis;
31
32namespace HeuristicLab.StructureIdentification {
33  public class MeanSquaredErrorEvaluator : GPEvaluatorBase {
34    public override string Description {
35      get {
36        return @"Evaluates 'OperatorTree' for all samples of 'DataSet' and calculates the mean-squared-error
37for the estimated values vs. the real values of 'TargetVariable'.";
38      }
39    }
40
41    public MeanSquaredErrorEvaluator()
42      : base() {
43    }
44
45    public override double Evaluate(IScope scope, IFunction function, int targetVariable, Dataset dataset) {
46      double errorsSquaredSum = 0;
47      double targetMean = dataset.GetMean(targetVariable);
48      for(int sample = 0; sample < dataset.Rows; sample++) {
49        double estimated = function.Evaluate(dataset, sample);
50        double original = dataset.GetValue(sample, targetVariable);
51        if(double.IsNaN(estimated) || double.IsInfinity(estimated)) {
52          estimated = targetMean + maximumPunishment;
53        } else if(estimated > targetMean + maximumPunishment) {
54          estimated = targetMean + maximumPunishment;
55        } else if(estimated < targetMean - maximumPunishment) {
56          estimated = targetMean - maximumPunishment;
57        }
58        double error = estimated - original;
59        errorsSquaredSum += error * error;
60      }
61      errorsSquaredSum /= dataset.Rows;
62      if(double.IsNaN(errorsSquaredSum) || double.IsInfinity(errorsSquaredSum)) {
63        errorsSquaredSum = double.MaxValue;
64      }
65      return errorsSquaredSum;
66    }
67  }
68}
Note: See TracBrowser for help on using the repository browser.