Free cookie consent management tool by TermsFeed Policy Generator

source: branches/3.0/sources/HeuristicLab.StructureIdentification/Evaluation/EarlyStoppingMeanSquaredErrorEvaluator.cs @ 15016

Last change on this file since 15016 was 137, checked in by gkronber, 17 years ago

merged bugfixes from r135 and r136 from the trunk into the 3.0 branch

File size: 3.2 KB
RevLine 
[128]1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using System.Text;
26using HeuristicLab.Core;
27using HeuristicLab.Data;
28using HeuristicLab.Operators;
29using HeuristicLab.Functions;
30using HeuristicLab.DataAnalysis;
31
32namespace HeuristicLab.StructureIdentification {
33  public class EarlyStoppingMeanSquaredErrorEvaluator : MeanSquaredErrorEvaluator {
34    public override string Description {
35      get {
[137]36        return @"Evaluates 'OperatorTree' for all samples of the dataset and calculates the mean-squared-error
[128]37for the estimated values vs. the real values of 'TargetVariable'.
38This operator stops the computation as soon as an upper limit for the mean-squared-error is reached.";
39      }
40    }
41
42    public EarlyStoppingMeanSquaredErrorEvaluator()
43      : base() {
[129]44      AddVariableInfo(new VariableInfo("QualityLimit", "The upper limit of the MSE which is used as early stopping criterion.", typeof(DoubleData), VariableKind.In));
[128]45    }
46
47    public override double Evaluate(IScope scope, IFunction function, int targetVariable, Dataset dataset) {
[137]48      double qualityLimit = GetVariableValue<DoubleData>("QualityLimit", scope, false).Data;
[128]49      double errorsSquaredSum = 0;
50      double targetMean = dataset.GetMean(targetVariable);
51      for(int sample = 0; sample < dataset.Rows; sample++) {
52        double estimated = function.Evaluate(dataset, sample);
53        double original = dataset.GetValue(sample, targetVariable);
54        if(double.IsNaN(estimated) || double.IsInfinity(estimated)) {
55          estimated = targetMean + maximumPunishment;
56        } else if(estimated > targetMean + maximumPunishment) {
57          estimated = targetMean + maximumPunishment;
58        } else if(estimated < targetMean - maximumPunishment) {
59          estimated = targetMean - maximumPunishment;
60        }
61        double error = estimated - original;
62        errorsSquaredSum += error * error;
63
[137]64        // check the limit and stop as soon as we hit the limit
65        if(errorsSquaredSum / dataset.Rows >= qualityLimit)
66          return errorsSquaredSum / (sample+1); // return estimated MSE (when the remaining errors are on average the same)
[128]67      }
68      errorsSquaredSum /= dataset.Rows;
69      if(double.IsNaN(errorsSquaredSum) || double.IsInfinity(errorsSquaredSum)) {
70        errorsSquaredSum = double.MaxValue;
71      }
72      return errorsSquaredSum;
73    }
74  }
75}
Note: See TracBrowser for help on using the repository browser.