1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Collections.Generic;
|
---|
23 | using System.Linq;
|
---|
24 | using HeuristicLab.Common;
|
---|
25 | using HeuristicLab.Data;
|
---|
26 | using HeuristicLab.Optimization;
|
---|
27 | using HEAL.Attic;
|
---|
28 |
|
---|
29 | namespace HeuristicLab.Problems.DataAnalysis.Trading {
|
---|
30 | /// <summary>
|
---|
31 | /// Abstract base class for trading data analysis solutions
|
---|
32 | /// </summary>
|
---|
33 | [StorableType("1AF0637D-7F29-4A57-8CC8-3AAFA402473F")]
|
---|
34 | public abstract class Solution : DataAnalysisSolution, ISolution {
|
---|
35 | private const string TrainingSharpeRatioResultName = "Sharpe ratio (training)";
|
---|
36 | private const string TestSharpeRatioResultName = "Sharpe ratio (test)";
|
---|
37 | private const string TrainingProfitResultName = "Profit (training)";
|
---|
38 | private const string TestProfitResultName = "Profit (test)";
|
---|
39 |
|
---|
40 | public new IModel Model {
|
---|
41 | get { return (IModel)base.Model; }
|
---|
42 | protected set { base.Model = value; }
|
---|
43 | }
|
---|
44 |
|
---|
45 | public new IProblemData ProblemData {
|
---|
46 | get { return (IProblemData)base.ProblemData; }
|
---|
47 | protected set { base.ProblemData = value; }
|
---|
48 | }
|
---|
49 |
|
---|
50 | public double TrainingSharpeRatio {
|
---|
51 | get { return ((DoubleValue)this[TrainingSharpeRatioResultName].Value).Value; }
|
---|
52 | private set { ((DoubleValue)this[TrainingSharpeRatioResultName].Value).Value = value; }
|
---|
53 | }
|
---|
54 |
|
---|
55 | public double TestSharpeRatio {
|
---|
56 | get { return ((DoubleValue)this[TestSharpeRatioResultName].Value).Value; }
|
---|
57 | private set { ((DoubleValue)this[TestSharpeRatioResultName].Value).Value = value; }
|
---|
58 | }
|
---|
59 | public double TrainingProfit {
|
---|
60 | get { return ((DoubleValue)this[TrainingProfitResultName].Value).Value; }
|
---|
61 | private set { ((DoubleValue)this[TrainingProfitResultName].Value).Value = value; }
|
---|
62 | }
|
---|
63 |
|
---|
64 | public double TestProfit {
|
---|
65 | get { return ((DoubleValue)this[TestProfitResultName].Value).Value; }
|
---|
66 | private set { ((DoubleValue)this[TestProfitResultName].Value).Value = value; }
|
---|
67 | }
|
---|
68 |
|
---|
69 | [StorableConstructor]
|
---|
70 | protected Solution(StorableConstructorFlag _) : base(_) { }
|
---|
71 | protected Solution(Solution original, Cloner cloner)
|
---|
72 | : base(original, cloner) {
|
---|
73 | }
|
---|
74 | public Solution(IModel model, IProblemData problemData)
|
---|
75 | : base(model, problemData) {
|
---|
76 | Add(new Result(TrainingSharpeRatioResultName, "Share ratio of the signals of the model on the training partition", new DoubleValue()));
|
---|
77 | Add(new Result(TestSharpeRatioResultName, "Sharpe ratio of the signals of the model on the test partition", new DoubleValue()));
|
---|
78 | Add(new Result(TrainingProfitResultName, "Profit of the model on the training partition", new DoubleValue()));
|
---|
79 | Add(new Result(TestProfitResultName, "Profit of the model on the test partition", new DoubleValue()));
|
---|
80 | }
|
---|
81 |
|
---|
82 | protected override void RecalculateResults() {
|
---|
83 | CalculateTradingResults();
|
---|
84 | }
|
---|
85 |
|
---|
86 | protected void CalculateTradingResults() {
|
---|
87 | double[] trainingSignals = TrainingSignals.ToArray(); // cache values
|
---|
88 | IEnumerable<double> trainingReturns = ProblemData.Dataset.GetDoubleValues(ProblemData.PriceChangeVariable, ProblemData.TrainingIndices);
|
---|
89 | double[] testSignals = TestSignals.ToArray(); // cache values
|
---|
90 | IEnumerable<double> testReturns = ProblemData.Dataset.GetDoubleValues(ProblemData.PriceChangeVariable, ProblemData.TestIndices);
|
---|
91 |
|
---|
92 | OnlineCalculatorError errorState;
|
---|
93 | double trainingSharpeRatio = OnlineSharpeRatioCalculator.Calculate(trainingReturns, trainingSignals, ProblemData.TransactionCosts, out errorState);
|
---|
94 | TrainingSharpeRatio = errorState == OnlineCalculatorError.None ? trainingSharpeRatio : double.NaN;
|
---|
95 | double testSharpeRatio = OnlineSharpeRatioCalculator.Calculate(testReturns, testSignals, ProblemData.TransactionCosts, out errorState);
|
---|
96 | TestSharpeRatio = errorState == OnlineCalculatorError.None ? testSharpeRatio : double.NaN;
|
---|
97 |
|
---|
98 | double trainingProfit = OnlineProfitCalculator.Calculate(trainingReturns, trainingSignals, ProblemData.TransactionCosts, out errorState);
|
---|
99 | TrainingProfit = errorState == OnlineCalculatorError.None ? trainingProfit : double.NaN;
|
---|
100 | double testProfit = OnlineProfitCalculator.Calculate(testReturns, testSignals, ProblemData.TransactionCosts, out errorState);
|
---|
101 | TestProfit = errorState == OnlineCalculatorError.None ? testProfit : double.NaN;
|
---|
102 |
|
---|
103 | }
|
---|
104 |
|
---|
105 | public virtual IEnumerable<double> Signals {
|
---|
106 | get { return GetSignals(Enumerable.Range(0, ProblemData.Dataset.Rows)); }
|
---|
107 | }
|
---|
108 | public virtual IEnumerable<double> TrainingSignals {
|
---|
109 | get { return GetSignals(ProblemData.TrainingIndices); }
|
---|
110 | }
|
---|
111 | public virtual IEnumerable<double> TestSignals {
|
---|
112 | get { return GetSignals(ProblemData.TestIndices); }
|
---|
113 | }
|
---|
114 | public virtual IEnumerable<double> GetSignals(IEnumerable<int> rows) {
|
---|
115 | return Model.GetSignals(ProblemData.Dataset, rows);
|
---|
116 | }
|
---|
117 | }
|
---|
118 | }
|
---|