Free cookie consent management tool by TermsFeed Policy Generator

source: branches/2994-AutoDiffForIntervals/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Interpreter/VectorAutoDiffEvaluator.cs @ 17399

Last change on this file since 17399 was 17303, checked in by gkronber, 5 years ago

#2994 continued refactoring and extended unit tests. Interval calculation still fails for some edge cases (mainly for undefined behaviour). VectorEvaluator and VectorAutoDiffEvaluator produce the same results as the LinearInterpreter. TODO: check gradient calculation

File size: 6.1 KB
Line 
1using System;
2using System.Collections.Generic;
3using System.Linq;
4using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
5
6namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
7  public sealed class VectorAutoDiffEvaluator : InterpreterBase<VectorOfAlgebraic<MultivariateDual<AlgebraicDouble>>> {
8    private const int BATCHSIZE = 128;
9    [ThreadStatic]
10    private Dictionary<string, double[]> cachedData;
11
12    [ThreadStatic]
13    private IDataset dataset;
14
15    [ThreadStatic]
16    private int rowIndex;
17
18    [ThreadStatic]
19    private int[] rows;
20
21    [ThreadStatic]
22    private Dictionary<ISymbolicExpressionTreeNode, int> node2paramIdx;
23
24    private void InitCache(IDataset dataset) {
25      this.dataset = dataset;
26      cachedData = new Dictionary<string, double[]>();
27      foreach (var v in dataset.DoubleVariables) {
28        cachedData[v] = dataset.GetDoubleValues(v).ToArray();
29      }
30    }
31
32    /// <summary>
33    ///
34    /// </summary>
35    /// <param name="tree"></param>
36    /// <param name="dataset"></param>
37    /// <param name="rows"></param>
38    /// <param name="parameterNodes"></param>
39    /// <param name="fi">Function output. Must be allocated by the caller.</param>
40    /// <param name="jac">Jacobian matrix. Must be allocated by the caller.</param>
41    public void Evaluate(ISymbolicExpressionTree tree, IDataset dataset, int[] rows, ISymbolicExpressionTreeNode[] parameterNodes, double[] fi, double[,] jac) {
42      if (cachedData == null || this.dataset != dataset) {
43        InitCache(dataset);
44      }
45
46      int nParams = parameterNodes.Length;
47      node2paramIdx = new Dictionary<ISymbolicExpressionTreeNode, int>();
48      for (int i = 0; i < parameterNodes.Length; i++) node2paramIdx.Add(parameterNodes[i], i);
49
50      var code = Compile(tree);
51
52      var remainingRows = rows.Length % BATCHSIZE;
53      var roundedTotal = rows.Length - remainingRows;
54
55      this.rows = rows;
56
57      for (rowIndex = 0; rowIndex < roundedTotal; rowIndex += BATCHSIZE) {
58        Evaluate(code);
59
60        // code[0].value.Value.CopyTo(fi, rowIndex, BATCHSIZE);
61        var v = code[0].value;
62        for (int k = 0; k < BATCHSIZE; k++) {
63          fi[rowIndex + k] = v[k].Value.Value;
64
65          // copy gradient to Jacobian
66          var g = v[k].Gradient;
67          for (int j = 0; j < nParams; ++j) {
68            if (g.Elements.TryGetValue(j, out AlgebraicDouble gj)) {
69              jac[rowIndex + k, j] = gj.Value;
70            } else {
71              jac[rowIndex + k, j] = 0.0;
72            }
73          }
74        }
75      }
76
77      if (remainingRows > 0) {
78        Evaluate(code);
79        // code[0].value.Value.CopyTo(fi, roundedTotal, remainingRows);
80        var v = code[0].value;
81        for (int k = 0; k < remainingRows; k++) {
82          fi[roundedTotal + k] = v[k].Value.Value;
83
84          var g = v[k].Gradient;
85          for (int j = 0; j < nParams; ++j) {
86            if (g.Elements.TryGetValue(j, out AlgebraicDouble gj)) {
87              jac[roundedTotal + k, j] = gj.Value;
88            } else {
89              jac[roundedTotal + k, j] = 0.0;
90            }
91          }
92        }
93      }
94    }
95
96    protected override void InitializeInternalInstruction(ref Instruction instruction, ISymbolicExpressionTreeNode node) {
97      instruction.value = new VectorOfAlgebraic<MultivariateDual<AlgebraicDouble>>(BATCHSIZE).Zero; // XXX zero needed?
98    }
99
100    protected override void InitializeTerminalInstruction(ref Instruction instruction, ConstantTreeNode constant) {
101      if (node2paramIdx.TryGetValue(constant, out var paramIdx)) {
102        instruction.value = new VectorOfAlgebraic<MultivariateDual<AlgebraicDouble>>(BATCHSIZE);
103        for (int k = 0; k < BATCHSIZE; k++) {
104          instruction.value[k] = new MultivariateDual<AlgebraicDouble>(constant.Value, paramIdx, 1.0); // gradient is 1.0 for all elements
105        }
106      } else {
107        instruction.value = new VectorOfAlgebraic<MultivariateDual<AlgebraicDouble>>(BATCHSIZE);
108        for (int k = 0; k < BATCHSIZE; k++) {
109          instruction.value[k] = new MultivariateDual<AlgebraicDouble>(constant.Value); // zero gradient
110        }
111      }
112
113      instruction.dblVal = constant.Value; // also store the parameter value in the instruction (not absolutely necessary, will not be used)
114    }
115
116    protected override void InitializeTerminalInstruction(ref Instruction instruction, VariableTreeNode variable) {
117      double[] data;
118      if (cachedData.ContainsKey(variable.VariableName)) {
119        data = cachedData[variable.VariableName];
120      } else {
121        data = dataset.GetReadOnlyDoubleValues(variable.VariableName).ToArray();
122        cachedData[variable.VariableName] = (double[])instruction.data;
123      }
124
125      var paramIdx = -1;
126      if (node2paramIdx.ContainsKey(variable)) {
127        paramIdx = node2paramIdx[variable];
128        instruction.value = new VectorOfAlgebraic<MultivariateDual<AlgebraicDouble>>(BATCHSIZE);
129        for(int k=0;k<BATCHSIZE;k++) {
130          instruction.value[k] = new MultivariateDual<AlgebraicDouble>(0.0, paramIdx, 0.0); // values are set in LoadVariable()
131        }
132      } else {
133        var f = new AlgebraicDoubleVector(BATCHSIZE);
134        instruction.value = new VectorOfAlgebraic<MultivariateDual<AlgebraicDouble>>(BATCHSIZE);
135        for (int k = 0; k < BATCHSIZE; k++) {
136          instruction.value[k] = new MultivariateDual<AlgebraicDouble>(0.0); // values are set in LoadVariable()
137        }
138      }
139
140      instruction.dblVal = variable.Weight;
141      instruction.data = new object[] { data, paramIdx };
142    }
143
144    protected override void LoadVariable(Instruction a) {
145      var paramIdx = (int)((object[])a.data)[1];
146      var data = (double[])((object[])a.data)[0];
147
148      for (int i = rowIndex; i < rows.Length && i - rowIndex < BATCHSIZE; i++) {
149        a.value[i - rowIndex].Value.Assign(a.dblVal * data[rows[i]]);
150      }
151
152      if (paramIdx >= 0) {
153        // update gradient with variable values
154        for (int i = rowIndex; i < rows.Length && i - rowIndex < BATCHSIZE; i++) {
155          a.value[i - rowIndex].Gradient.Elements[paramIdx].Assign(data[rows[i]]);
156        }
157      }
158    }
159  }
160}
Note: See TracBrowser for help on using the repository browser.