Free cookie consent management tool by TermsFeed Policy Generator

source: branches/2994-AutoDiffForIntervals/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Interpreter/Interpreter.cs @ 16694

Last change on this file since 16694 was 16694, checked in by gkronber, 6 years ago

#2994: implemented remaining methods for IAlgebraicType and changed formatting

File size: 43.9 KB
Line 
1using System;
2using System.Collections.Generic;
3using System.Linq;
4using HeuristicLab.Common;
5using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
6
7namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
8  public abstract class Interpreter<T> where T : IAlgebraicType<T> {
9    public struct Instruction {
10      public byte opcode;
11      public ushort narg;
12      public int childIndex;
13      public double dblVal;
14      public object data; // any kind of data you want to store in instructions
15      public T value;
16    }
17
18    public T Evaluate(Instruction[] code) {
19      for (int i = code.Length - 1; i >= 0; --i) {
20        var instr = code[i];
21        var c = instr.childIndex;
22        var n = instr.narg;
23
24        switch (instr.opcode) {
25          case OpCodes.Variable: {
26              LoadVariable(instr);
27              break;
28            }
29          case OpCodes.Constant: { break; }  // we initialize constants in Compile. The value never changes afterwards
30          case OpCodes.Add: {
31              instr.value.Assign(code[c].value);
32              for (int j = 1; j < n; ++j) {
33                instr.value.Add(code[c + j].value);
34              }
35              break;
36            }
37
38          case OpCodes.Sub: {
39              if (n == 1) {
40                instr.value.AssignNeg(code[c].value);
41              } else {
42                instr.value.Assign(code[c].value);
43                for (int j = 1; j < n; ++j) {
44                  instr.value.Sub(code[c + j].value);
45                }
46              }
47              break;
48            }
49
50          case OpCodes.Mul: {
51              instr.value.Assign(code[c].value);
52              for (int j = 1; j < n; ++j) {
53                instr.value.Mul(code[c + j].value);
54              }
55              break;
56            }
57
58          case OpCodes.Div: {
59              if (n == 1) {
60                instr.value.AssignInv(code[c].value);
61              } else {
62                instr.value.Assign(code[c].value);
63                for (int j = 1; j < n; ++j) {
64                  instr.value.Div(code[c + j].value);
65                }
66              }
67              break;
68            }
69          case OpCodes.Square: {
70              instr.value.AssignIntPower(code[c].value, 2);
71              break;
72            }
73          case OpCodes.Exp: {
74              instr.value.AssignExp(code[c].value);
75              break;
76            }
77
78          case OpCodes.Log: {
79              instr.value.AssignLog(code[c].value);
80              break;
81            }
82          default: throw new ArgumentException($"Unknown opcode {code[c].opcode}");
83        }
84      }
85      return code[0].value;
86    }
87
88    protected Instruction[] Compile(ISymbolicExpressionTree tree) {
89      var root = tree.Root.GetSubtree(0).GetSubtree(0);
90      var code = new Instruction[root.GetLength()];
91      if (root.SubtreeCount > ushort.MaxValue) throw new ArgumentException("Number of subtrees is too big (>65.535)");
92      int c = 1, i = 0;
93      foreach (var node in root.IterateNodesBreadth()) {
94        if (node.SubtreeCount > ushort.MaxValue) throw new ArgumentException("Number of subtrees is too big (>65.535)");
95        code[i] = new Instruction {
96          opcode = OpCodes.MapSymbolToOpCode(node),
97          narg = (ushort)node.SubtreeCount,
98          childIndex = c
99        };
100        if (node is VariableTreeNode variable) {
101          InitializeTerminalInstruction(ref code[i], variable);
102        } else if (node is ConstantTreeNode constant) {
103          InitializeTerminalInstruction(ref code[i], constant);
104        } else {
105          InitializeInternalInstruction(ref code[i], node);
106        }
107        c += node.SubtreeCount;
108        ++i;
109      }
110      return code;
111    }
112
113    protected abstract void InitializeTerminalInstruction(ref Instruction instruction, ConstantTreeNode constant);
114    protected abstract void InitializeTerminalInstruction(ref Instruction instruction, VariableTreeNode variable);
115    protected abstract void InitializeInternalInstruction(ref Instruction instruction, ISymbolicExpressionTreeNode node);
116
117    protected abstract void LoadVariable(Instruction a);
118
119  }
120
121
122  public sealed class VectorEvaluator : Interpreter<DoubleVector> {
123    private const int BATCHSIZE = 128;
124    [ThreadStatic]
125    private Dictionary<string, double[]> cachedData;
126
127    [ThreadStatic]
128    private IDataset dataset;
129
130    [ThreadStatic]
131    private int rowIndex;
132
133    [ThreadStatic]
134    private int[] rows;
135
136    private void InitCache(IDataset dataset) {
137      this.dataset = dataset;
138      cachedData = new Dictionary<string, double[]>();
139      foreach (var v in dataset.DoubleVariables) {
140        cachedData[v] = dataset.GetReadOnlyDoubleValues(v).ToArray();
141      }
142    }
143
144    public double[] Evaluate(ISymbolicExpressionTree tree, IDataset dataset, int[] rows) {
145      if (cachedData == null || this.dataset != dataset) {
146        InitCache(dataset);
147      }
148
149      this.rows = rows;
150      var code = Compile(tree);
151      var remainingRows = rows.Length % BATCHSIZE;
152      var roundedTotal = rows.Length - remainingRows;
153
154      var result = new double[rows.Length];
155
156      for (rowIndex = 0; rowIndex < roundedTotal; rowIndex += BATCHSIZE) {
157        Evaluate(code);
158        code[0].value.CopyTo(result, rowIndex, BATCHSIZE);
159      }
160
161      if (remainingRows > 0) {
162        Evaluate(code);
163        code[0].value.CopyTo(result, roundedTotal, remainingRows);
164      }
165
166      return result;
167    }
168
169    protected override void InitializeTerminalInstruction(ref Instruction instruction, ConstantTreeNode constant) {
170      instruction.dblVal = constant.Value;
171      instruction.value = new DoubleVector(BATCHSIZE);
172      instruction.value.AssignConstant(instruction.dblVal);
173    }
174
175    protected override void InitializeTerminalInstruction(ref Instruction instruction, VariableTreeNode variable) {
176      instruction.dblVal = variable.Weight;
177      instruction.value = new DoubleVector(BATCHSIZE);
178      if (cachedData.ContainsKey(variable.VariableName)) {
179        instruction.data = cachedData[variable.VariableName];
180      } else {
181        instruction.data = dataset.GetDoubleValues(variable.VariableName).ToArray();
182        cachedData[variable.VariableName] = (double[])instruction.data;
183      }
184    }
185
186    protected override void InitializeInternalInstruction(ref Instruction instruction, ISymbolicExpressionTreeNode node) {
187      instruction.value = new DoubleVector(BATCHSIZE);
188    }
189
190    protected override void LoadVariable(Instruction a) {
191      var data = (double[])a.data;
192      for (int i = rowIndex; i < rows.Length && i - rowIndex < BATCHSIZE; i++) a.value[i - rowIndex] = data[rows[i]];
193      a.value.Scale(a.dblVal);
194    }
195  }
196
197  public sealed class VectorAutoDiffEvaluator : Interpreter<MultivariateDual<DoubleVector>> {
198    private const int BATCHSIZE = 128;
199    [ThreadStatic]
200    private Dictionary<string, double[]> cachedData;
201
202    [ThreadStatic]
203    private IDataset dataset;
204
205    [ThreadStatic]
206    private int rowIndex;
207
208    [ThreadStatic]
209    private int[] rows;
210
211    [ThreadStatic]
212    private Dictionary<ISymbolicExpressionTreeNode, int> node2paramIdx;
213
214    private void InitCache(IDataset dataset) {
215      this.dataset = dataset;
216      cachedData = new Dictionary<string, double[]>();
217      foreach (var v in dataset.DoubleVariables) {
218        cachedData[v] = dataset.GetDoubleValues(v).ToArray();
219      }
220    }
221
222    public void Evaluate(ISymbolicExpressionTree tree, IDataset dataset, int[] rows, ISymbolicExpressionTreeNode[] parameterNodes, out double[] fi, out double[,] jac) {
223      if (cachedData == null || this.dataset != dataset) {
224        InitCache(dataset);
225      }
226
227      int nParams = parameterNodes.Length;
228      node2paramIdx = new Dictionary<ISymbolicExpressionTreeNode, int>();
229      for (int i = 0; i < parameterNodes.Length; i++) node2paramIdx.Add(parameterNodes[i], i);
230
231      var code = Compile(tree);
232
233      var remainingRows = rows.Length % BATCHSIZE;
234      var roundedTotal = rows.Length - remainingRows;
235
236      fi = new double[rows.Length];
237      jac = new double[rows.Length, nParams];
238
239      this.rows = rows;
240
241      for (rowIndex = 0; rowIndex < roundedTotal; rowIndex += BATCHSIZE) {
242        Evaluate(code);
243        code[0].value.Value.CopyTo(fi, rowIndex, BATCHSIZE);
244
245        // TRANSPOSE into JAC
246        var g = code[0].value.Gradient;
247        for (int j = 0; j < nParams; ++j) {
248          g.Elements[j].CopyColumnTo(jac, j, rowIndex, BATCHSIZE);
249        }
250      }
251
252      if (remainingRows > 0) {
253        Evaluate(code);
254        code[0].value.Value.CopyTo(fi, roundedTotal, remainingRows);
255
256        var g = code[0].value.Gradient;
257        for (int j = 0; j < nParams; ++j)
258          g.Elements[j].CopyColumnTo(jac, j, roundedTotal, remainingRows);
259      }
260    }
261
262    protected override void InitializeInternalInstruction(ref Instruction instruction, ISymbolicExpressionTreeNode node) {
263      var zero = new DoubleVector(BATCHSIZE);
264      instruction.value = new MultivariateDual<DoubleVector>(zero);
265    }
266
267    protected override void InitializeTerminalInstruction(ref Instruction instruction, ConstantTreeNode constant) {
268      var g_arr = new double[BATCHSIZE];
269      if (node2paramIdx.TryGetValue(constant, out var paramIdx)) {
270        for (int i = 0; i < BATCHSIZE; i++) g_arr[i] = 1.0;
271        var g = new DoubleVector(g_arr);
272        instruction.value = new MultivariateDual<DoubleVector>(new DoubleVector(BATCHSIZE), paramIdx, g); // only a single column for the gradient
273      } else {
274        instruction.value = new MultivariateDual<DoubleVector>(new DoubleVector(BATCHSIZE));
275      }
276
277      instruction.dblVal = constant.Value;
278      instruction.value.Value.AssignConstant(instruction.dblVal);
279    }
280
281    protected override void InitializeTerminalInstruction(ref Instruction instruction, VariableTreeNode variable) {
282      double[] data;
283      if (cachedData.ContainsKey(variable.VariableName)) {
284        data = cachedData[variable.VariableName];
285      } else {
286        data = dataset.GetReadOnlyDoubleValues(variable.VariableName).ToArray();
287        cachedData[variable.VariableName] = (double[])instruction.data;
288      }
289
290      var paramIdx = -1;
291      if (node2paramIdx.ContainsKey(variable)) {
292        paramIdx = node2paramIdx[variable];
293        var f = new DoubleVector(BATCHSIZE);
294        var g = new DoubleVector(BATCHSIZE);
295        instruction.value = new MultivariateDual<DoubleVector>(f, paramIdx, g);
296      } else {
297        var f = new DoubleVector(BATCHSIZE);
298        instruction.value = new MultivariateDual<DoubleVector>(f);
299      }
300
301      instruction.dblVal = variable.Weight;
302      instruction.data = new object[] { data, paramIdx };
303    }
304
305    protected override void LoadVariable(Instruction a) {
306      var paramIdx = (int)((object[])a.data)[1];
307      var data = (double[])((object[])a.data)[0];
308
309      for (int i = rowIndex; i < rows.Length && i - rowIndex < BATCHSIZE; i++) a.value.Value[i - rowIndex] = data[rows[i]];
310      a.value.Scale(a.dblVal);
311
312      if (paramIdx >= 0) {
313        // update gradient with variable values
314        var g = a.value.Gradient.Elements[paramIdx];
315        for (int i = rowIndex; i < rows.Length && i - rowIndex < BATCHSIZE; i++) {
316          g[i] = data[rows[i]];
317        }
318      }
319    }
320  }
321
322
323  public sealed class IntervalEvaluator : Interpreter<AlgebraicInterval> {
324    [ThreadStatic]
325    private Dictionary<string, Interval> intervals;
326
327    public Interval Evaluate(ISymbolicExpressionTree tree, Dictionary<string, Interval> intervals) {
328      this.intervals = intervals;
329      var code = Compile(tree);
330      Evaluate(code);
331      return new Interval(code[0].value.LowerBound.Value.Value, code[0].value.UpperBound.Value.Value);
332    }
333
334    public Interval Evaluate(ISymbolicExpressionTree tree, Dictionary<string, Interval> intervals, ISymbolicExpressionTreeNode[] paramNodes, out double[] lowerGradient, out double[] upperGradient) {
335      this.intervals = intervals;
336      var code = Compile(tree);
337      Evaluate(code);
338      lowerGradient = new double[paramNodes.Length];
339      upperGradient = new double[paramNodes.Length];
340      var l = code[0].value.LowerBound;
341      var u = code[0].value.UpperBound;
342      for (int i = 0; i < paramNodes.Length; ++i) {
343        if (paramNodes[i] == null) continue;
344        lowerGradient[i] = l.Gradient.Elements[paramNodes[i]];
345        upperGradient[i] = u.Gradient.Elements[paramNodes[i]];
346      }
347      return new Interval(code[0].value.LowerBound.Value.Value, code[0].value.UpperBound.Value.Value);
348    }
349
350    protected override void InitializeInternalInstruction(ref Instruction instruction, ISymbolicExpressionTreeNode node) {
351      instruction.value = new AlgebraicInterval(0, 0);
352    }
353
354
355    protected override void InitializeTerminalInstruction(ref Instruction instruction, ConstantTreeNode constant) {
356      instruction.dblVal = constant.Value;
357      instruction.value = new AlgebraicInterval(
358        new MultivariateDual<AlgebraicDouble>(constant.Value, constant, 1.0),
359        new MultivariateDual<AlgebraicDouble>(constant.Value, constant, 1.0) // use node as key
360        );
361    }
362
363    protected override void InitializeTerminalInstruction(ref Instruction instruction, VariableTreeNode variable) {
364      instruction.dblVal = variable.Weight;
365      instruction.value = new AlgebraicInterval(
366        low: new MultivariateDual<AlgebraicDouble>(intervals[variable.VariableName].LowerBound, variable, intervals[variable.VariableName].LowerBound),  // bounds change by variable value d/dc (c I(var)) = I(var)
367        high: new MultivariateDual<AlgebraicDouble>(intervals[variable.VariableName].UpperBound, variable, intervals[variable.VariableName].UpperBound)
368        );
369    }
370
371    protected override void LoadVariable(Instruction a) {
372      // nothing to do
373    }
374  }
375
376  public interface IAlgebraicType<T> {
377    T Zero { get; }
378
379    T AssignAbs(T a); // set this to assign abs(a)
380    T Assign(T a); // assign this to same value as a (copy!)
381    T AssignNeg(T a); // set this to negative(a)
382    T AssignInv(T a); // set this to inv(a);
383    T Scale(double s); // scale this with s
384    T Add(T a); // add a to this
385    T Sub(T a); // subtract a from this
386    T Mul(T a); // multiply this with a
387    T Div(T a); // divide this by a
388    T AssignLog(T a); // set this to log a
389    T AssignExp(T a); // set this to exp(a)
390    T AssignSin(T a); // set this to sin(a)
391    T AssignCos(T a); // set this to cos(a)
392    T AssignIntPower(T a, int p);
393    T AssignIntRoot(T a, int r);
394    T AssignSgn(T a); // set this to sign(a)
395    T Clone();
396  }
397
398  public static class Algebraic {
399    public static T Abs<T>(this T a) where T : IAlgebraicType<T> { a.AssignAbs(a); return a; }
400    public static T Neg<T>(this T a) where T : IAlgebraicType<T> { a.AssignNeg(a); return a; }
401    public static T Inv<T>(this T a) where T : IAlgebraicType<T> { a.AssignInv(a); return a; }
402    public static T Log<T>(this T a) where T : IAlgebraicType<T> { a.AssignLog(a); return a; }
403    public static T Exp<T>(this T a) where T : IAlgebraicType<T> { a.AssignExp(a); return a; }
404    public static T Sin<T>(this T a) where T : IAlgebraicType<T> { a.AssignSin(a); return a; }
405    public static T Cos<T>(this T a) where T : IAlgebraicType<T> { a.AssignCos(a); return a; }
406    public static T Sgn<T>(this T a) where T : IAlgebraicType<T> { a.AssignSgn(a); return a; }
407    public static T IntPower<T>(this T a, int p) where T : IAlgebraicType<T> { a.AssignIntPower(a, p); return a; }
408    public static T IntRoot<T>(this T a, int r) where T : IAlgebraicType<T> { a.AssignIntRoot(a, r); return a; }
409
410    public static T Max<T>(T a, T b) where T : IAlgebraicType<T> {
411      // ((a + b) + abs(b - a)) / 2
412      return a.Clone().Add(b).Add(b.Clone().Sub(a).Abs()).Scale(1.0 / 2.0);
413    }
414    public static T Min<T>(T a, T b) where T : IAlgebraicType<T> {
415      // ((a + b) - abs(a - b)) / 2
416      return a.Clone().Add(b).Sub(a.Clone().Sub(b).Abs()).Scale(1.0 / 2.0);
417    }
418  }
419
420
421  // algebraic type wrapper for a double value
422  public sealed class AlgebraicDouble : IAlgebraicType<AlgebraicDouble> {
423    public static implicit operator AlgebraicDouble(double value) { return new AlgebraicDouble(value); }
424    public static implicit operator double(AlgebraicDouble value) { return value.Value; }
425    public double Value;
426
427    public AlgebraicDouble Zero => new AlgebraicDouble(0.0);
428    public AlgebraicDouble() { }
429    public AlgebraicDouble(double value) { this.Value = value; }
430    public AlgebraicDouble Assign(AlgebraicDouble a) { Value = a.Value; return this; }
431    public AlgebraicDouble Add(AlgebraicDouble a) { Value += a.Value; return this; }
432    public AlgebraicDouble Sub(AlgebraicDouble a) { Value -= a.Value; return this; }
433    public AlgebraicDouble Mul(AlgebraicDouble a) { Value *= a.Value; return this; }
434    public AlgebraicDouble Div(AlgebraicDouble a) { Value /= a.Value; return this; }
435    public AlgebraicDouble Scale(double s) { Value *= s; return this; }
436    public AlgebraicDouble AssignInv(AlgebraicDouble a) { Value = 1.0 / a.Value; return this; }
437    public AlgebraicDouble AssignNeg(AlgebraicDouble a) { Value = -a.Value; return this; }
438    public AlgebraicDouble AssignSin(AlgebraicDouble a) { Value = Math.Sin(a.Value); return this; }
439    public AlgebraicDouble AssignCos(AlgebraicDouble a) { Value = Math.Cos(a.Value); return this; }
440    public AlgebraicDouble AssignLog(AlgebraicDouble a) { Value = Math.Log(a.Value); return this; }
441    public AlgebraicDouble AssignExp(AlgebraicDouble a) { Value = Math.Exp(a.Value); return this; }
442    public AlgebraicDouble AssignIntPower(AlgebraicDouble a, int p) { Value = Math.Pow(a.Value, p); return this; }
443    public AlgebraicDouble AssignIntRoot(AlgebraicDouble a, int r) { Value = Math.Pow(a.Value, 1.0 / r); return this; }
444    public AlgebraicDouble AssignAbs(AlgebraicDouble a) { Value = Math.Abs(a.Value); return this; }
445    public AlgebraicDouble AssignSgn(AlgebraicDouble a) { Value = Math.Sign(a.Value); return this; }
446    public AlgebraicDouble Clone() { return new AlgebraicDouble(Value); }
447  }
448
449  // a simple vector as an algebraic type
450  public class DoubleVector : IAlgebraicType<DoubleVector> {
451    private double[] arr;
452
453
454    public double this[int idx] { get { return arr[idx]; } set { arr[idx] = value; } }
455
456    public int Length => arr.Length;
457
458    public DoubleVector(int length) {
459      arr = new double[length];
460    }
461
462    public DoubleVector() { }
463
464    /// <summary>
465    ///
466    /// </summary>
467    /// <param name="arr">array is not copied</param>
468    public DoubleVector(double[] arr) {
469      this.arr = arr;
470    }
471
472    public DoubleVector Zero => new DoubleVector(new double[this.Length]); // must return vector of same length as this (therefore Zero is not static)
473    public DoubleVector Assign(DoubleVector a) { for (int i = 0; i < arr.Length; ++i) { arr[i] = a.arr[i]; } return this; }
474    public DoubleVector Add(DoubleVector a) { for (int i = 0; i < arr.Length; ++i) { arr[i] += a.arr[i]; } return this; }
475    public DoubleVector Sub(DoubleVector a) { for (int i = 0; i < arr.Length; ++i) { arr[i] -= a.arr[i]; } return this; }
476    public DoubleVector Mul(DoubleVector a) { for (int i = 0; i < arr.Length; ++i) { arr[i] *= a.arr[i]; } return this; }
477    public DoubleVector Div(DoubleVector a) { for (int i = 0; i < arr.Length; ++i) { arr[i] /= a.arr[i]; } return this; }
478    public DoubleVector AssignNeg(DoubleVector a) { for (int i = 0; i < arr.Length; ++i) { arr[i] = -a.arr[i]; } return this; }
479    public DoubleVector AssignInv(DoubleVector a) { for (int i = 0; i < arr.Length; ++i) { arr[i] = 1.0 / a.arr[i]; } return this; }
480    public DoubleVector Scale(double s) { for (int i = 0; i < arr.Length; ++i) { arr[i] *= s; } return this; }
481    public DoubleVector AssignLog(DoubleVector a) { for (int i = 0; i < arr.Length; ++i) { arr[i] = Math.Log(a.arr[i]); } return this; }
482    public DoubleVector AssignSin(DoubleVector a) { for (int i = 0; i < arr.Length; ++i) { arr[i] = Math.Sin(a.arr[i]); } return this; }
483    public DoubleVector AssignExp(DoubleVector a) { for (int i = 0; i < arr.Length; ++i) { arr[i] = Math.Exp(a.arr[i]); } return this; }
484    public DoubleVector AssignCos(DoubleVector a) { for (int i = 0; i < arr.Length; ++i) { arr[i] = Math.Cos(a.arr[i]); } return this; }
485    public DoubleVector AssignIntPower(DoubleVector a, int p) { for (int i = 0; i < arr.Length; ++i) { arr[i] = Math.Pow(a.arr[i], p); } return this; }
486    public DoubleVector AssignIntRoot(DoubleVector a, int r) { for (int i = 0; i < arr.Length; ++i) { arr[i] = Math.Pow(a.arr[i], 1.0 / r); } return this; }
487    public DoubleVector AssignAbs(DoubleVector a) { for (int i = 0; i < arr.Length; ++i) { arr[i] = Math.Abs(a.arr[i]); } return this; }
488    public DoubleVector AssignSgn(DoubleVector a) { for (int i = 0; i < arr.Length; ++i) { arr[i] = Math.Sign(a.arr[i]); } return this; }
489
490    public DoubleVector Clone() {
491      var v = new DoubleVector(this.arr.Length);
492      Array.Copy(arr, v.arr, v.arr.Length);
493      return v;
494    }
495
496    public void AssignConstant(double constantValue) {
497      for (int i = 0; i < arr.Length; ++i) {
498        arr[i] = constantValue;
499      }
500    }
501
502    public void CopyTo(double[] dest, int idx, int length) {
503      Array.Copy(arr, 0, dest, idx, length);
504    }
505
506    public void CopyFrom(double[] data, int rowIndex) {
507      Array.Copy(data, rowIndex, arr, 0, Math.Min(arr.Length, data.Length - rowIndex));
508    }
509    public void CopyRowTo(double[,] dest, int row) {
510      for (int j = 0; j < arr.Length; ++j) dest[row, j] = arr[j];
511    }
512
513    internal void CopyColumnTo(double[,] dest, int column, int row, int len) {
514      for (int j = 0; j < len; ++j) dest[row + j, column] = arr[j];
515    }
516  }
517
518  // vectors of algebraic types
519  public sealed class Vector<T> : IAlgebraicType<Vector<T>> where T : IAlgebraicType<T> {
520    private T[] elems;
521
522    public T this[int idx] { get { return elems[idx]; } set { elems[idx] = value; } }
523
524    public int Length => elems.Length;
525
526
527    private Vector() { }
528
529    public Vector(int len) {
530      elems = new T[len];
531    }
532
533    /// <summary>
534    ///
535    /// </summary>
536    /// <param name="elems">The array is copied (element-wise clone)</param>
537    public Vector(T[] elems) {
538      this.elems = new T[elems.Length];
539      for (int i = 0; i < elems.Length; ++i) { this.elems[i] = elems[i].Clone(); }
540    }
541
542    /// <summary>
543    ///
544    /// </summary>
545    /// <param name="elems">Array is not copied!</param>
546    /// <returns></returns>
547    public Vector<T> FromArray(T[] elems) {
548      var v = new Vector<T>();
549      v.elems = elems;
550      return v;
551    }
552
553    public void CopyTo(T[] dest) {
554      if (dest.Length != elems.Length) throw new InvalidOperationException("arr lengths do not match in Vector<T>.Copy");
555      Array.Copy(elems, dest, dest.Length);
556    }
557
558    public Vector<T> Clone() {
559      return new Vector<T>(elems);
560    }
561
562    public Vector<T> Concat(Vector<T> other) {
563      var oldLen = Length;
564      Array.Resize(ref this.elems, oldLen + other.Length);
565      for (int i = oldLen; i < Length; i++) {
566        elems[i] = other.elems[i - oldLen].Clone();
567      }
568      return this;
569    }
570
571    public Vector<T> Zero => new Vector<T>(Length);
572    public Vector<T> Assign(Vector<T> a) { for (int i = 0; i < elems.Length; ++i) { elems[i].Assign(a.elems[i]); } return this; }
573    public Vector<T> Add(Vector<T> a) { for (int i = 0; i < elems.Length; ++i) { elems[i].Add(a.elems[i]); } return this; }
574    public Vector<T> Sub(Vector<T> a) { for (int i = 0; i < elems.Length; ++i) { elems[i].Sub(a.elems[i]); } return this; }
575    public Vector<T> Mul(Vector<T> a) { for (int i = 0; i < elems.Length; ++i) { elems[i].Mul(a.elems[i]); } return this; }
576    public Vector<T> Div(Vector<T> a) { for (int i = 0; i < elems.Length; ++i) { elems[i].Div(a.elems[i]); } return this; }
577    public Vector<T> AssignNeg(Vector<T> a) { for (int i = 0; i < elems.Length; ++i) { elems[i].AssignNeg(a.elems[i]); } return this; }
578    public Vector<T> Scale(double s) { for (int i = 0; i < elems.Length; ++i) { elems[i].Scale(s); } return this; }
579    public Vector<T> Scale(T s) { for (int i = 0; i < elems.Length; ++i) { elems[i].Mul(s); } return this; }
580    public Vector<T> AssignInv(Vector<T> a) { for (int i = 0; i < elems.Length; ++i) { elems[i].AssignInv(a.elems[i]); } return this; }
581    public Vector<T> AssignLog(Vector<T> a) { for (int i = 0; i < elems.Length; ++i) { elems[i].AssignLog(a.elems[i]); } return this; }
582    public Vector<T> AssignExp(Vector<T> a) { for (int i = 0; i < elems.Length; ++i) { elems[i].AssignExp(a.elems[i]); } return this; }
583    public Vector<T> AssignSin(Vector<T> a) { for (int i = 0; i < elems.Length; ++i) { elems[i].AssignSin(a.elems[i]); } return this; }
584    public Vector<T> AssignCos(Vector<T> a) { for (int i = 0; i < elems.Length; ++i) { elems[i].AssignCos(a.elems[i]); } return this; }
585    public Vector<T> AssignIntPower(Vector<T> a, int p) { for (int i = 0; i < elems.Length; ++i) { elems[i].AssignIntPower(a.elems[i], p); } return this; }
586    public Vector<T> AssignIntRoot(Vector<T> a, int r) { for (int i = 0; i < elems.Length; ++i) { elems[i].AssignIntRoot(a.elems[i], r); } return this; }
587    public Vector<T> AssignAbs(Vector<T> a) { for (int i = 0; i < elems.Length; ++i) { elems[i].AssignAbs(a.elems[i]); } return this; }
588    public Vector<T> AssignSgn(Vector<T> a) { for (int i = 0; i < elems.Length; ++i) { elems[i].AssignSgn(a.elems[i]); } return this; }
589  }
590
591
592  /// <summary>
593  /// A sparse vector of algebraic types. Elements are accessed via a key of type K
594  /// </summary>
595  /// <typeparam name="K">Key type</typeparam>
596  /// <typeparam name="T">Element type</typeparam>
597  public sealed class SparseVector<K, T> : IAlgebraicType<SparseVector<K, T>> where T : IAlgebraicType<T> {
598
599    private Dictionary<K, T> elems;
600    public IReadOnlyDictionary<K, T> Elements => elems;
601
602
603    public SparseVector(SparseVector<K, T> original) {
604      elems = original.elems.ToDictionary(kvp => kvp.Key, kvp => kvp.Value.Clone());
605    }
606
607    /// <summary>
608    ///
609    /// </summary>
610    /// <param name="keys"></param>
611    /// <param name="values">values are cloned</param>
612    public SparseVector(K[] keys, T[] values) {
613      if (keys.Length != values.Length) throw new ArgumentException("lengths of keys and values doesn't match in SparseVector");
614      elems = new Dictionary<K, T>(keys.Length);
615      for (int i = 0; i < keys.Length; ++i) {
616        elems.Add(keys[i], values[i].Clone());
617      }
618    }
619
620    public SparseVector() {
621      this.elems = new Dictionary<K, T>();
622    }
623
624
625
626    private void AssignTransformed(SparseVector<K, T> a, Func<T, T, T> mapAssign) {
627      foreach (var kvp in a.elems) {
628        if (elems.TryGetValue(kvp.Key, out T value))
629          mapAssign(kvp.Value, value);
630        else {
631          var newValue = kvp.Value.Zero;
632          elems.Add(kvp.Key, newValue);
633          mapAssign(kvp.Value, newValue);
634        }
635      }
636    }
637
638    public SparseVector<K, T> Zero => new SparseVector<K, T>();
639
640    public SparseVector<K, T> Scale(T s) { foreach (var kvp in elems) { kvp.Value.Mul(s); } return this; }
641    public SparseVector<K, T> Scale(double s) { foreach (var kvp in elems) { kvp.Value.Scale(s); } return this; }
642
643    public SparseVector<K, T> Assign(SparseVector<K, T> a) { AssignTransformed(a, (src, dest) => dest.Assign(src)); return this; }
644    public SparseVector<K, T> Add(SparseVector<K, T> a) { AssignTransformed(a, (src, dest) => dest.Add(src)); return this; }
645    public SparseVector<K, T> Mul(SparseVector<K, T> a) { AssignTransformed(a, (src, dest) => dest.Mul(src)); return this; }
646    public SparseVector<K, T> Sub(SparseVector<K, T> a) { AssignTransformed(a, (src, dest) => dest.Sub(src)); return this; }
647    public SparseVector<K, T> Div(SparseVector<K, T> a) { AssignTransformed(a, (src, dest) => dest.Div(src)); return this; }
648    public SparseVector<K, T> AssignInv(SparseVector<K, T> a) { AssignTransformed(a, (src, dest) => dest.AssignInv(src)); return this; }
649    public SparseVector<K, T> AssignNeg(SparseVector<K, T> a) { AssignTransformed(a, (src, dest) => dest.AssignNeg(src)); return this; }
650    public SparseVector<K, T> AssignLog(SparseVector<K, T> a) { AssignTransformed(a, (src, dest) => dest.AssignLog(src)); return this; }
651    public SparseVector<K, T> AssignExp(SparseVector<K, T> a) { AssignTransformed(a, (src, dest) => dest.AssignExp(src)); return this; }
652    public SparseVector<K, T> AssignIntPower(SparseVector<K, T> a, int p) { AssignTransformed(a, (src, dest) => dest.AssignIntPower(src, p)); return this; }
653    public SparseVector<K, T> AssignIntRoot(SparseVector<K, T> a, int r) { AssignTransformed(a, (src, dest) => dest.AssignIntRoot(src, r)); return this; }
654    public SparseVector<K, T> AssignSin(SparseVector<K, T> a) { AssignTransformed(a, (src, dest) => dest.AssignSin(src)); return this; }
655    public SparseVector<K, T> AssignCos(SparseVector<K, T> a) { AssignTransformed(a, (src, dest) => dest.AssignCos(src)); return this; }
656    public SparseVector<K, T> AssignAbs(SparseVector<K, T> a) { AssignTransformed(a, (src, dest) => dest.AssignAbs(src)); return this; }
657    public SparseVector<K, T> AssignSgn(SparseVector<K, T> a) { AssignTransformed(a, (src, dest) => dest.AssignSgn(src)); return this; }
658
659    public SparseVector<K, T> Clone() {
660      return new SparseVector<K, T>(this);
661    }
662  }
663
664  public class AlgebraicInterval : IAlgebraicType<AlgebraicInterval> {
665    private MultivariateDual<AlgebraicDouble> low;
666    private MultivariateDual<AlgebraicDouble> high;
667
668    public MultivariateDual<AlgebraicDouble> LowerBound => low.Clone();
669    public MultivariateDual<AlgebraicDouble> UpperBound => high.Clone();
670
671
672    public AlgebraicInterval() : this(double.NegativeInfinity, double.PositiveInfinity) { }
673
674    public AlgebraicInterval(MultivariateDual<AlgebraicDouble> low, MultivariateDual<AlgebraicDouble> high) {
675      this.low = low.Clone();
676      this.high = high.Clone();
677    }
678
679    public AlgebraicInterval(double low, double high) {
680      this.low = new MultivariateDual<AlgebraicDouble>(new AlgebraicDouble(low));
681      this.high = new MultivariateDual<AlgebraicDouble>(new AlgebraicDouble(high));
682    }
683
684    public AlgebraicInterval Zero => new AlgebraicInterval(0.0, 0.0);
685    public AlgebraicInterval Add(AlgebraicInterval a) {
686      low.Add(a.low);
687      high.Add(a.high);
688      return this;
689    }
690
691    public AlgebraicInterval Mul(AlgebraicInterval a) {
692      var v1 = low.Clone().Mul(a.low);
693      var v2 = low.Clone().Mul(a.high);
694      var v3 = high.Clone().Mul(a.low);
695      var v4 = high.Clone().Mul(a.high);
696
697      low = Algebraic.Min(Algebraic.Min(v1, v2), Algebraic.Min(v3, v4));
698      high = Algebraic.Max(Algebraic.Max(v1, v2), Algebraic.Max(v3, v4));
699      return this;
700    }
701
702    public AlgebraicInterval Assign(AlgebraicInterval a) {
703      low = a.low;
704      high = a.high;
705      return this;
706    }
707
708    public AlgebraicInterval AssignCos(AlgebraicInterval a) {
709      return AssignSin(a.Clone().Sub(new AlgebraicInterval(Math.PI / 2, Math.PI / 2)));
710    }
711
712    public AlgebraicInterval Div(AlgebraicInterval a) {
713      if (a.Contains(0.0)) {
714        if (a.low.Value.Value.IsAlmost(0.0) && a.high.Value.Value.IsAlmost(0.0)) {
715          low = new MultivariateDual<AlgebraicDouble>(double.NegativeInfinity);
716          high = new MultivariateDual<AlgebraicDouble>(double.PositiveInfinity);
717        } else if (a.low.Value.Value.IsAlmost(0.0))
718          Mul(new AlgebraicInterval(a.Clone().high.Inv(), new MultivariateDual<AlgebraicDouble>(double.PositiveInfinity)));
719        else
720          Mul(new AlgebraicInterval(new MultivariateDual<AlgebraicDouble>(double.NegativeInfinity), a.low.Clone().Inv()));
721      } else {
722        Mul(new AlgebraicInterval(a.high.Clone().Inv(), a.low.Clone().Inv())); // inverting leads to inverse roles of high and low
723      }
724      return this;
725    }
726
727    public AlgebraicInterval AssignExp(AlgebraicInterval a) {
728      low.AssignExp(a.low);
729      high.AssignExp(a.high);
730      return this;
731    }
732
733    public AlgebraicInterval AssignIntPower(AlgebraicInterval a, int p) {
734      if (p == 0) {
735        // => 1
736        low = new MultivariateDual<AlgebraicDouble>(1.0);
737        high = new MultivariateDual<AlgebraicDouble>(1.0);
738        return this;
739      }
740      if (p == 1) return this;
741
742      if (p < 0) {  // x^-3 == 1/(x^3)
743        AssignIntPower(a, -p);
744        return AssignInv(this);
745      } else {
746        // p is even => interval must be positive
747        if (p % 2 == 0) {
748          if (a.Contains(0.0)) {
749            low = new MultivariateDual<AlgebraicDouble>(0.0);
750            high = Algebraic.Max(low.Clone().IntPower(p), high.Clone().IntPower(p));
751          } else {
752            var lowPower = low.Clone().IntPower(p);
753            var highPower = high.Clone().IntPower(p);
754            low = Algebraic.Min(lowPower, highPower);
755            high = Algebraic.Max(lowPower, highPower);
756          }
757        } else {
758          // p is uneven
759          var lowPower = low.Clone().IntPower(p);
760          var highPower = high.Clone().IntPower(p);
761          low = Algebraic.Min(lowPower, highPower);
762          high = Algebraic.Max(lowPower, highPower);
763        }
764        return this;
765      }
766    }
767
768    public AlgebraicInterval AssignIntRoot(AlgebraicInterval a, int r) {
769      if (r == 0) { low = new MultivariateDual<AlgebraicDouble>(double.NaN); high = new MultivariateDual<AlgebraicDouble>(double.NaN); return this; }
770      if (r == 1) return this;
771      if (r < 0) {
772        // x^ (-1/2) = 1 / (x^(1/2))
773        AssignIntRoot(a, -r);
774        return AssignInv(this);
775      } else {
776        // root only defined for positive arguments
777        if (a.LowerBound.Value.Value < 0) {
778          low = new MultivariateDual<AlgebraicDouble>(double.NaN);
779          high = new MultivariateDual<AlgebraicDouble>(double.NaN);
780          return this;
781        } else {
782          low.AssignIntRoot(a.low, r);
783          high.AssignIntRoot(a.high, r);
784          return this;
785        }
786      }
787    }
788
789    public AlgebraicInterval AssignInv(AlgebraicInterval a) {
790      low = new MultivariateDual<AlgebraicDouble>(1.0);
791      high = new MultivariateDual<AlgebraicDouble>(1.0);
792      return Div(a);
793    }
794
795    public AlgebraicInterval AssignLog(AlgebraicInterval a) {
796      low.AssignLog(a.low);
797      high.AssignLog(a.high);
798      return this;
799    }
800
801    public AlgebraicInterval AssignNeg(AlgebraicInterval a) {
802      low.AssignNeg(a.high);
803      high.AssignNeg(a.low);
804      return this;
805    }
806
807    public AlgebraicInterval Scale(double s) {
808      low.Scale(s);
809      high.Scale(s);
810      if (s < 0) {
811        var t = low;
812        low = high;
813        high = t;
814      }
815      return this;
816    }
817
818    public AlgebraicInterval AssignSin(AlgebraicInterval a) {
819      if (Math.Abs(a.UpperBound.Value.Value - a.LowerBound.Value.Value) >= Math.PI * 2) {
820        low = new MultivariateDual<AlgebraicDouble>(-1.0);
821        high = new MultivariateDual<AlgebraicDouble>(1.0);
822      }
823
824      //divide the interval by PI/2 so that the optima lie at x element of N (0,1,2,3,4,...)
825      double Pihalf = Math.PI / 2;
826      var scaled = this.Clone().Scale(1.0 / Pihalf);
827      //move to positive scale
828      if (scaled.LowerBound.Value.Value < 0) {
829        int periodsToMove = Math.Abs((int)scaled.LowerBound.Value.Value / 4) + 1;
830        scaled.Add(new AlgebraicInterval(periodsToMove * 4, periodsToMove * 4));
831      }
832
833      double scaledLowerBound = scaled.LowerBound.Value.Value % 4.0;
834      double scaledUpperBound = scaled.UpperBound.Value.Value % 4.0;
835      if (scaledUpperBound < scaledLowerBound) scaledUpperBound += 4.0;
836      List<double> sinValues = new List<double>();
837      sinValues.Add(Math.Sin(scaledLowerBound * Pihalf));
838      sinValues.Add(Math.Sin(scaledUpperBound * Pihalf));
839
840      int startValue = (int)Math.Ceiling(scaledLowerBound);
841      while (startValue < scaledUpperBound) {
842        sinValues.Add(Math.Sin(startValue * Pihalf));
843        startValue += 1;
844      }
845
846      low = new MultivariateDual<AlgebraicDouble>(sinValues.Min());
847      high = new MultivariateDual<AlgebraicDouble>(sinValues.Max());
848      return this;
849    }
850
851    public AlgebraicInterval Sub(AlgebraicInterval a) {
852      // [x1,x2] − [y1,y2] = [x1 − y2,x2 − y1]
853      low.Sub(a.high);
854      high.Sub(a.low);
855      return this;
856    }
857
858    public AlgebraicInterval Clone() {
859      return new AlgebraicInterval(low, high);
860    }
861
862    public bool Contains(double val) {
863      return LowerBound.Value.Value <= val && val <= UpperBound.Value.Value;
864    }
865
866    public AlgebraicInterval AssignAbs(AlgebraicInterval a) {
867      if (a.Contains(0.0)) {
868        var abslow = a.low.Clone().Abs();
869        var abshigh = a.high.Clone().Abs();
870        a.high.Assign(Algebraic.Max(abslow, abshigh));
871        a.low.Assign(new MultivariateDual<AlgebraicDouble>(0.0)); // lost gradient for lower bound
872      } else {
873        var abslow = a.low.Clone().Abs();
874        var abshigh = a.high.Clone().Abs();
875        a.low.Assign(Algebraic.Min(abslow, abshigh));
876        a.high.Assign(Algebraic.Max(abslow, abshigh));
877      }
878      return this;
879    }
880
881    public AlgebraicInterval AssignSgn(AlgebraicInterval a) {
882      low.AssignSgn(a.low);
883      high.AssignSgn(a.high);
884      return this;
885    }
886  }
887
888
889  public class Dual<V> : IAlgebraicType<Dual<V>>
890    where V : IAlgebraicType<V> {
891    private V v;
892    public V Value => v;
893
894    private V dv;
895    public V Derivative => dv;
896
897    public Dual(V v, V dv) { this.v = v; this.dv = dv; }
898
899    public Dual<V> Zero => new Dual<V>(Value.Zero, Derivative.Zero);
900
901    public Dual<V> Assign(Dual<V> a) { v.Assign(a.v); dv.Assign(a.dv); return this; }
902    public Dual<V> Scale(double s) { v.Scale(s); dv.Scale(s); return this; }
903    public Dual<V> Add(Dual<V> a) { v.Add(a.v); dv.Add(a.dv); return this; }
904    public Dual<V> Sub(Dual<V> a) { v.Sub(a.v); dv.Sub(a.dv); return this; }
905    public Dual<V> AssignNeg(Dual<V> a) { v.AssignNeg(a.v); dv.AssignNeg(a.dv); return this; }
906    public Dual<V> AssignInv(Dual<V> a) { v.AssignInv(a.v); dv.AssignNeg(a.dv).Mul(v).Mul(v); return this; } // (1/f(x))' = - f(x)' / f(x)^2
907
908    // (a(x) * b(x))' = b(x)*a(x)' + b(x)'*a(x);
909    public Dual<V> Mul(Dual<V> a) {
910      var t1 = a.dv.Clone().Mul(v);
911      var t2 = dv.Clone().Mul(a.v);
912      dv.Assign(t1).Add(t2);
913
914      v.Mul(a.v);
915      return this;
916    }
917    public Dual<V> Div(Dual<V> a) { Mul(a.Inv()); return this; }
918
919    public Dual<V> AssignExp(Dual<V> a) { v.AssignExp(a.v); dv.Assign(a.dv).Mul(v); return this; } // exp(f(x)) = exp(f(x))*f(x)'
920    public Dual<V> AssignLog(Dual<V> a) { v.AssignLog(a.v); dv.Assign(a.dv).Div(a.v); return this; }     // log(x)' = 1/f(x) * f(x)'
921
922    public Dual<V> AssignIntPower(Dual<V> a, int p) { v.AssignIntPower(a.v, p); dv.Assign(a.dv).Scale(p).Mul(a.v.Clone().IntPower(p - 1)); return this; }
923    public Dual<V> AssignIntRoot(Dual<V> a, int r) { v.AssignIntRoot(a.v, r); dv.Assign(a.dv).Scale(1.0 / r).Mul(a.v.IntRoot(r - 1)); return this; }
924
925    public Dual<V> AssignSin(Dual<V> a) { v.AssignSin(a.v); dv.Assign(a.dv).Mul(a.v.Clone().Cos()); return this; }
926    public Dual<V> AssignCos(Dual<V> a) { v.AssignCos(a.v); dv.AssignNeg(a.dv).Mul(a.v.Clone().Sin()); return this; }
927
928    public Dual<V> AssignAbs(Dual<V> a) { v.AssignAbs(a.v); dv.Assign(a.dv).Mul(a.v.Clone().Sgn()); return this; }       // abs(f(x))' = f(x)*f'(x) / |f(x)|     
929    public Dual<V> AssignSgn(Dual<V> a) { v.AssignSgn(a.v); dv.Assign(a.dv.Zero); return this; }
930
931    public Dual<V> Clone() { return new Dual<V>(v.Clone(), dv.Clone()); }
932
933  }
934
935  /// <summary>
936  /// An algebraic type which has a value as well as the partial derivatives of the value over multiple variables.
937  /// </summary>
938  /// <typeparam name="V"></typeparam>
939  public class MultivariateDual<V> : IAlgebraicType<MultivariateDual<V>> where V : IAlgebraicType<V>, new() {
940    private V v;
941    public V Value => v;
942
943    private SparseVector<object, V> dv;
944    public SparseVector<object, V> Gradient => dv; // <key,value> partial derivative identified via the key
945
946    private MultivariateDual(MultivariateDual<V> orig) { this.v = orig.v.Clone(); this.dv = orig.dv.Clone(); }
947
948    /// <summary>
949    /// Constructor without partial derivative
950    /// </summary>
951    /// <param name="v"></param>
952    public MultivariateDual(V v) { this.v = v.Clone(); this.dv = new SparseVector<object, V>(); }
953
954    /// <summary>
955    /// Constructor for multiple partial derivatives
956    /// </summary>
957    /// <param name="v"></param>
958    /// <param name="keys"></param>
959    /// <param name="dv"></param>
960    public MultivariateDual(V v, object[] keys, V[] dv) { this.v = v.Clone(); this.dv = new SparseVector<object, V>(keys, dv); }
961
962    /// <summary>
963    /// Constructor for a single partial derivative
964    /// </summary>
965    /// <param name="v"></param>
966    /// <param name="key"></param>
967    /// <param name="dv"></param>
968    public MultivariateDual(V v, object key, V dv) { this.v = v.Clone(); this.dv = new SparseVector<object, V>(new[] { key }, new[] { dv }); }
969
970    /// <summary>
971    /// Constructor with a given value and gradient. For internal use.
972    /// </summary>
973    /// <param name="v">The value (not cloned).</param>
974    /// <param name="gradient">The gradient (not cloned).</param>
975    internal MultivariateDual(V v, SparseVector<object, V> gradient) { this.v = v; this.dv = gradient; }
976
977    public MultivariateDual<V> Clone() { return new MultivariateDual<V>(this); }
978
979    public MultivariateDual<V> Zero => new MultivariateDual<V>(Value.Zero, Gradient.Zero);
980
981    public MultivariateDual<V> Scale(double s) { v.Scale(s); dv.Scale(s); return this; }
982
983    public MultivariateDual<V> Add(MultivariateDual<V> a) { v.Add(a.v); dv.Add(a.dv); return this; }
984    public MultivariateDual<V> Sub(MultivariateDual<V> a) { v.Sub(a.v); dv.Sub(a.dv); return this; }
985    public MultivariateDual<V> Assign(MultivariateDual<V> a) { v.Assign(a.v); dv.Assign(a.dv); return this; }
986    public MultivariateDual<V> Mul(MultivariateDual<V> a) {
987      // (a(x) * b(x))' = b(x)*a(x)' + b(x)'*a(x);
988      var t1 = a.dv.Clone().Scale(v);
989      var t2 = dv.Clone().Scale(a.v);
990      dv.Assign(t1).Add(t2);
991
992      v.Mul(a.v);
993      return this;
994    }
995    public MultivariateDual<V> Div(MultivariateDual<V> a) { v.Div(a.v); dv.Mul(a.dv.Inv()); return this; }
996    public MultivariateDual<V> AssignNeg(MultivariateDual<V> a) { v.AssignNeg(a.v); dv.AssignNeg(a.dv); return this; }
997    public MultivariateDual<V> AssignInv(MultivariateDual<V> a) { v.AssignInv(a.v); dv.AssignNeg(a.dv).Scale(v).Scale(v); return this; }   // (1/f(x))' = - f(x)' / f(x)^2
998
999    public MultivariateDual<V> AssignSin(MultivariateDual<V> a) { v.AssignSin(a.v); dv.Assign(a.dv).Scale(a.v.Clone().Cos()); return this; }
1000    public MultivariateDual<V> AssignCos(MultivariateDual<V> a) { v.AssignCos(a.v); dv.AssignNeg(a.dv).Scale(a.v.Clone().Sin()); return this; }
1001
1002    public MultivariateDual<V> AssignIntPower(MultivariateDual<V> a, int p) { v.AssignIntPower(a.v, p); dv.Assign(a.dv).Scale(p).Scale(a.v.Clone().IntPower(p - 1)); return this; }
1003    public MultivariateDual<V> AssignIntRoot(MultivariateDual<V> a, int r) { v.AssignIntRoot(a.v, r); dv.Assign(a.dv).Scale(1.0 / r).Scale(a.v.IntRoot(r - 1)); return this; }
1004
1005    public MultivariateDual<V> AssignExp(MultivariateDual<V> a) { v.AssignExp(a.v); dv.Assign(a.dv).Scale(v); return this; } // exp(f(x)) = exp(f(x))*f(x)'     
1006    public MultivariateDual<V> AssignLog(MultivariateDual<V> a) { v.AssignLog(a.v); dv.Assign(a.dv).Scale(a.v.Clone().Inv()); return this; }     // log(x)' = 1/f(x) * f(x)'
1007
1008    public MultivariateDual<V> AssignAbs(MultivariateDual<V> a) { v.AssignAbs(a.v); dv.Assign(a.dv).Scale(a.v.Clone().Sgn()); return this; }      // abs(f(x))' = f(x)*f'(x) / |f(x)|  doesn't work for intervals     
1009    public MultivariateDual<V> AssignSgn(MultivariateDual<V> a) { v.AssignSgn(a.v); dv = a.dv.Zero; return this; } // sign(f(x))' = 0;     
1010  }
1011}
Note: See TracBrowser for help on using the repository browser.