[17327] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using HeuristicLab.Common;
|
---|
| 23 | using HeuristicLab.Core;
|
---|
| 24 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 25 | using HeuristicLab.Parameters;
|
---|
| 26 | using HEAL.Attic;
|
---|
| 27 | using System;
|
---|
| 28 | using HeuristicLab.Data;
|
---|
| 29 |
|
---|
| 30 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression.Extensions {
|
---|
| 31 | [Item("TrainingBestSolutionAnalyzer (with constraints)", "An operator that analyzes the training best symbolic regression solution for single objective symbolic regression problems.")]
|
---|
| 32 | [StorableType("93A9331C-9E50-45DE-804B-21785A07EFB4")]
|
---|
| 33 | public sealed class TrainingBestSolutionAnalyzer : SymbolicDataAnalysisSingleObjectiveTrainingBestSolutionAnalyzer<ISymbolicRegressionSolution>,
|
---|
| 34 | ISymbolicDataAnalysisInterpreterOperator, ISymbolicDataAnalysisBoundedOperator {
|
---|
| 35 | private const string ProblemDataParameterName = "ProblemData";
|
---|
| 36 | private const string SymbolicDataAnalysisTreeInterpreterParameterName = "SymbolicDataAnalysisTreeInterpreter";
|
---|
| 37 | private const string EstimationLimitsParameterName = "EstimationLimits";
|
---|
| 38 | #region parameter properties
|
---|
| 39 | public ILookupParameter<IRegressionProblemData> ProblemDataParameter {
|
---|
| 40 | get { return (ILookupParameter<IRegressionProblemData>)Parameters[ProblemDataParameterName]; }
|
---|
| 41 | }
|
---|
| 42 | public ILookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter> SymbolicDataAnalysisTreeInterpreterParameter {
|
---|
| 43 | get { return (ILookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter>)Parameters[SymbolicDataAnalysisTreeInterpreterParameterName]; }
|
---|
| 44 | }
|
---|
| 45 | public IValueLookupParameter<DoubleLimit> EstimationLimitsParameter {
|
---|
| 46 | get { return (IValueLookupParameter<DoubleLimit>)Parameters[EstimationLimitsParameterName]; }
|
---|
| 47 | }
|
---|
| 48 | #endregion
|
---|
| 49 |
|
---|
| 50 | [StorableConstructor]
|
---|
| 51 | private TrainingBestSolutionAnalyzer(StorableConstructorFlag _) : base(_) { }
|
---|
| 52 | private TrainingBestSolutionAnalyzer(TrainingBestSolutionAnalyzer original, Cloner cloner) : base(original, cloner) { }
|
---|
| 53 | public TrainingBestSolutionAnalyzer()
|
---|
| 54 | : base() {
|
---|
| 55 | Parameters.Add(new LookupParameter<IRegressionProblemData>(ProblemDataParameterName, "The problem data for the symbolic regression solution."));
|
---|
| 56 | Parameters.Add(new LookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter>(SymbolicDataAnalysisTreeInterpreterParameterName, "The symbolic data analysis tree interpreter for the symbolic expression tree."));
|
---|
| 57 | Parameters.Add(new ValueLookupParameter<DoubleLimit>(EstimationLimitsParameterName, "The lower and upper limit for the estimated values produced by the symbolic regression model."));
|
---|
| 58 | }
|
---|
| 59 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 60 | return new TrainingBestSolutionAnalyzer(this, cloner);
|
---|
| 61 | }
|
---|
| 62 |
|
---|
| 63 | protected override ISymbolicRegressionSolution CreateSolution(ISymbolicExpressionTree bestTree, double bestQuality) {
|
---|
| 64 | if (!ApplyLinearScalingParameter.ActualValue.Value) throw new NotSupportedException("This analyzer only works if linear scaling of models is activated.");
|
---|
| 65 |
|
---|
| 66 | var problemData = ProblemDataParameter.ActualValue;
|
---|
| 67 | var solTree = (ISymbolicExpressionTree)bestTree.Clone();
|
---|
| 68 | using (var nls = new ConstrainedNLSInternal("MMA", solTree, 100, ProblemDataParameter.ActualValue)) {
|
---|
| 69 | var originalConstraintValues = (double[])nls.BestConstraintValues.Clone(); // for debugging
|
---|
| 70 | nls.Optimize(ConstrainedNLSInternal.OptimizationMode.UpdateParametersAndKeepLinearScaling);
|
---|
| 71 |
|
---|
| 72 | var model = new SymbolicRegressionModel(problemData.TargetVariable, solTree,
|
---|
| 73 | SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper);
|
---|
| 74 | var sol = new SymbolicRegressionSolution(model, (IRegressionProblemData)problemData.Clone());
|
---|
| 75 | // debugging
|
---|
| 76 | sol.AddOrUpdateResult("Constraint values (after optimization)", new DoubleArray(nls.BestConstraintValues));
|
---|
| 77 | sol.AddOrUpdateResult("Constraint values (before optimization)", new DoubleArray(originalConstraintValues));
|
---|
| 78 | sol.AddOrUpdateResult("Quality before optimization in analyzer", new DoubleValue(bestQuality));
|
---|
| 79 | sol.AddOrUpdateResult("Quality after optimization in analyzer", new DoubleValue(nls.BestError));
|
---|
| 80 | sol.AddOrUpdateResult("NLOpt result", new StringValue(nls.OptResult.ToString()));
|
---|
| 81 | return sol;
|
---|
| 82 | }
|
---|
| 83 | }
|
---|
| 84 | }
|
---|
| 85 | }
|
---|