1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
29 | using HeuristicLab.Optimization;
|
---|
30 | using HeuristicLab.Parameters;
|
---|
31 | using HEAL.Attic;
|
---|
32 |
|
---|
33 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression {
|
---|
34 | [Item("Constant Optimization Evaluator (new)", "Calculates Pearson R² of a symbolic regression solution and optimizes the constant used.")]
|
---|
35 | [StorableType("1D5361E9-EF73-47D2-9211-FDD39BBC1018")]
|
---|
36 | public class SymbolicRegressionNewConstantOptimizationEvaluator : SymbolicRegressionSingleObjectiveEvaluator {
|
---|
37 | private const string ConstantOptimizationIterationsParameterName = "ConstantOptimizationIterations";
|
---|
38 | private const string ConstantOptimizationImprovementParameterName = "ConstantOptimizationImprovement";
|
---|
39 | private const string ConstantOptimizationProbabilityParameterName = "ConstantOptimizationProbability";
|
---|
40 | private const string ConstantOptimizationRowsPercentageParameterName = "ConstantOptimizationRowsPercentage";
|
---|
41 | private const string UpdateConstantsInTreeParameterName = "UpdateConstantsInSymbolicExpressionTree";
|
---|
42 | private const string UpdateVariableWeightsParameterName = "Update Variable Weights";
|
---|
43 |
|
---|
44 | private const string FunctionEvaluationsResultParameterName = "Constants Optimization Function Evaluations";
|
---|
45 | private const string GradientEvaluationsResultParameterName = "Constants Optimization Gradient Evaluations";
|
---|
46 | private const string CountEvaluationsParameterName = "Count Function and Gradient Evaluations";
|
---|
47 |
|
---|
48 | public IFixedValueParameter<IntValue> ConstantOptimizationIterationsParameter {
|
---|
49 | get { return (IFixedValueParameter<IntValue>)Parameters[ConstantOptimizationIterationsParameterName]; }
|
---|
50 | }
|
---|
51 | public IFixedValueParameter<DoubleValue> ConstantOptimizationImprovementParameter {
|
---|
52 | get { return (IFixedValueParameter<DoubleValue>)Parameters[ConstantOptimizationImprovementParameterName]; }
|
---|
53 | }
|
---|
54 | public IFixedValueParameter<PercentValue> ConstantOptimizationProbabilityParameter {
|
---|
55 | get { return (IFixedValueParameter<PercentValue>)Parameters[ConstantOptimizationProbabilityParameterName]; }
|
---|
56 | }
|
---|
57 | public IFixedValueParameter<PercentValue> ConstantOptimizationRowsPercentageParameter {
|
---|
58 | get { return (IFixedValueParameter<PercentValue>)Parameters[ConstantOptimizationRowsPercentageParameterName]; }
|
---|
59 | }
|
---|
60 | public IFixedValueParameter<BoolValue> UpdateConstantsInTreeParameter {
|
---|
61 | get { return (IFixedValueParameter<BoolValue>)Parameters[UpdateConstantsInTreeParameterName]; }
|
---|
62 | }
|
---|
63 | public IFixedValueParameter<BoolValue> UpdateVariableWeightsParameter {
|
---|
64 | get { return (IFixedValueParameter<BoolValue>)Parameters[UpdateVariableWeightsParameterName]; }
|
---|
65 | }
|
---|
66 |
|
---|
67 | public IResultParameter<IntValue> FunctionEvaluationsResultParameter {
|
---|
68 | get { return (IResultParameter<IntValue>)Parameters[FunctionEvaluationsResultParameterName]; }
|
---|
69 | }
|
---|
70 | public IResultParameter<IntValue> GradientEvaluationsResultParameter {
|
---|
71 | get { return (IResultParameter<IntValue>)Parameters[GradientEvaluationsResultParameterName]; }
|
---|
72 | }
|
---|
73 | public IFixedValueParameter<BoolValue> CountEvaluationsParameter {
|
---|
74 | get { return (IFixedValueParameter<BoolValue>)Parameters[CountEvaluationsParameterName]; }
|
---|
75 | }
|
---|
76 |
|
---|
77 |
|
---|
78 | public IntValue ConstantOptimizationIterations {
|
---|
79 | get { return ConstantOptimizationIterationsParameter.Value; }
|
---|
80 | }
|
---|
81 | public DoubleValue ConstantOptimizationImprovement {
|
---|
82 | get { return ConstantOptimizationImprovementParameter.Value; }
|
---|
83 | }
|
---|
84 | public PercentValue ConstantOptimizationProbability {
|
---|
85 | get { return ConstantOptimizationProbabilityParameter.Value; }
|
---|
86 | }
|
---|
87 | public PercentValue ConstantOptimizationRowsPercentage {
|
---|
88 | get { return ConstantOptimizationRowsPercentageParameter.Value; }
|
---|
89 | }
|
---|
90 | public bool UpdateConstantsInTree {
|
---|
91 | get { return UpdateConstantsInTreeParameter.Value.Value; }
|
---|
92 | set { UpdateConstantsInTreeParameter.Value.Value = value; }
|
---|
93 | }
|
---|
94 |
|
---|
95 | public bool UpdateVariableWeights {
|
---|
96 | get { return UpdateVariableWeightsParameter.Value.Value; }
|
---|
97 | set { UpdateVariableWeightsParameter.Value.Value = value; }
|
---|
98 | }
|
---|
99 |
|
---|
100 | public bool CountEvaluations {
|
---|
101 | get { return CountEvaluationsParameter.Value.Value; }
|
---|
102 | set { CountEvaluationsParameter.Value.Value = value; }
|
---|
103 | }
|
---|
104 |
|
---|
105 | public override bool Maximization {
|
---|
106 | get { return true; }
|
---|
107 | }
|
---|
108 |
|
---|
109 | [StorableConstructor]
|
---|
110 | protected SymbolicRegressionNewConstantOptimizationEvaluator(StorableConstructorFlag _) : base(_) { }
|
---|
111 | protected SymbolicRegressionNewConstantOptimizationEvaluator(SymbolicRegressionNewConstantOptimizationEvaluator original, Cloner cloner)
|
---|
112 | : base(original, cloner) {
|
---|
113 | }
|
---|
114 | public SymbolicRegressionNewConstantOptimizationEvaluator()
|
---|
115 | : base() {
|
---|
116 | Parameters.Add(new FixedValueParameter<IntValue>(ConstantOptimizationIterationsParameterName, "Determines how many iterations should be calculated while optimizing the constant of a symbolic expression tree (0 indicates other or default stopping criterion).", new IntValue(10)));
|
---|
117 | Parameters.Add(new FixedValueParameter<DoubleValue>(ConstantOptimizationImprovementParameterName, "Determines the relative improvement which must be achieved in the constant optimization to continue with it (0 indicates other or default stopping criterion).", new DoubleValue(0)) { Hidden = true });
|
---|
118 | Parameters.Add(new FixedValueParameter<PercentValue>(ConstantOptimizationProbabilityParameterName, "Determines the probability that the constants are optimized", new PercentValue(1)));
|
---|
119 | Parameters.Add(new FixedValueParameter<PercentValue>(ConstantOptimizationRowsPercentageParameterName, "Determines the percentage of the rows which should be used for constant optimization", new PercentValue(1)));
|
---|
120 | Parameters.Add(new FixedValueParameter<BoolValue>(UpdateConstantsInTreeParameterName, "Determines if the constants in the tree should be overwritten by the optimized constants.", new BoolValue(true)) { Hidden = true });
|
---|
121 | Parameters.Add(new FixedValueParameter<BoolValue>(UpdateVariableWeightsParameterName, "Determines if the variable weights in the tree should be optimized.", new BoolValue(true)) { Hidden = true });
|
---|
122 |
|
---|
123 | Parameters.Add(new FixedValueParameter<BoolValue>(CountEvaluationsParameterName, "Determines if function and gradient evaluation should be counted.", new BoolValue(false)));
|
---|
124 | Parameters.Add(new ResultParameter<IntValue>(FunctionEvaluationsResultParameterName, "The number of function evaluations performed by the constants optimization evaluator", "Results", new IntValue()));
|
---|
125 | Parameters.Add(new ResultParameter<IntValue>(GradientEvaluationsResultParameterName, "The number of gradient evaluations performed by the constants optimization evaluator", "Results", new IntValue()));
|
---|
126 | }
|
---|
127 |
|
---|
128 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
129 | return new SymbolicRegressionNewConstantOptimizationEvaluator(this, cloner);
|
---|
130 | }
|
---|
131 |
|
---|
132 | [StorableHook(HookType.AfterDeserialization)]
|
---|
133 | private void AfterDeserialization() { }
|
---|
134 |
|
---|
135 | private static readonly object locker = new object();
|
---|
136 |
|
---|
137 | public override IOperation InstrumentedApply() {
|
---|
138 | var solution = SymbolicExpressionTreeParameter.ActualValue;
|
---|
139 | double quality;
|
---|
140 | if (RandomParameter.ActualValue.NextDouble() < ConstantOptimizationProbability.Value) {
|
---|
141 | IEnumerable<int> constantOptimizationRows = GenerateRowsToEvaluate(ConstantOptimizationRowsPercentage.Value);
|
---|
142 | var counter = new EvaluationsCounter();
|
---|
143 | quality = OptimizeConstants(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, solution, ProblemDataParameter.ActualValue,
|
---|
144 | constantOptimizationRows, ApplyLinearScalingParameter.ActualValue.Value, ConstantOptimizationIterations.Value, updateVariableWeights: UpdateVariableWeights, lowerEstimationLimit: EstimationLimitsParameter.ActualValue.Lower, upperEstimationLimit: EstimationLimitsParameter.ActualValue.Upper, updateConstantsInTree: UpdateConstantsInTree, counter: counter);
|
---|
145 |
|
---|
146 | if (ConstantOptimizationRowsPercentage.Value != RelativeNumberOfEvaluatedSamplesParameter.ActualValue.Value) {
|
---|
147 | var evaluationRows = GenerateRowsToEvaluate();
|
---|
148 | quality = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, solution, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, ProblemDataParameter.ActualValue, evaluationRows, ApplyLinearScalingParameter.ActualValue.Value);
|
---|
149 | }
|
---|
150 |
|
---|
151 | if (CountEvaluations) {
|
---|
152 | lock (locker) {
|
---|
153 | FunctionEvaluationsResultParameter.ActualValue.Value += counter.FunctionEvaluations;
|
---|
154 | GradientEvaluationsResultParameter.ActualValue.Value += counter.GradientEvaluations;
|
---|
155 | }
|
---|
156 | }
|
---|
157 |
|
---|
158 | } else {
|
---|
159 | var evaluationRows = GenerateRowsToEvaluate();
|
---|
160 | quality = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, solution, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, ProblemDataParameter.ActualValue, evaluationRows, ApplyLinearScalingParameter.ActualValue.Value);
|
---|
161 | }
|
---|
162 | QualityParameter.ActualValue = new DoubleValue(quality);
|
---|
163 |
|
---|
164 | return base.InstrumentedApply();
|
---|
165 | }
|
---|
166 |
|
---|
167 | public override double Evaluate(IExecutionContext context, ISymbolicExpressionTree tree, IRegressionProblemData problemData, IEnumerable<int> rows) {
|
---|
168 | SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = context;
|
---|
169 | EstimationLimitsParameter.ExecutionContext = context;
|
---|
170 | ApplyLinearScalingParameter.ExecutionContext = context;
|
---|
171 | FunctionEvaluationsResultParameter.ExecutionContext = context;
|
---|
172 | GradientEvaluationsResultParameter.ExecutionContext = context;
|
---|
173 |
|
---|
174 | // Pearson R² evaluator is used on purpose instead of the const-opt evaluator,
|
---|
175 | // because Evaluate() is used to get the quality of evolved models on
|
---|
176 | // different partitions of the dataset (e.g., best validation model)
|
---|
177 | double r2 = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, tree, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, problemData, rows, ApplyLinearScalingParameter.ActualValue.Value);
|
---|
178 |
|
---|
179 | SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = null;
|
---|
180 | EstimationLimitsParameter.ExecutionContext = null;
|
---|
181 | ApplyLinearScalingParameter.ExecutionContext = null;
|
---|
182 | FunctionEvaluationsResultParameter.ExecutionContext = null;
|
---|
183 | GradientEvaluationsResultParameter.ExecutionContext = null;
|
---|
184 |
|
---|
185 | return r2;
|
---|
186 | }
|
---|
187 |
|
---|
188 | public class EvaluationsCounter {
|
---|
189 | public int FunctionEvaluations = 0;
|
---|
190 | public int GradientEvaluations = 0;
|
---|
191 | }
|
---|
192 |
|
---|
193 | private static void GetParameterNodes(ISymbolicExpressionTree tree, out List<ISymbolicExpressionTreeNode> thetaNodes, out List<double> thetaValues) {
|
---|
194 | thetaNodes = new List<ISymbolicExpressionTreeNode>();
|
---|
195 | thetaValues = new List<double>();
|
---|
196 |
|
---|
197 | var nodes = tree.IterateNodesPrefix().ToArray();
|
---|
198 | for (int i = 0; i < nodes.Length; ++i) {
|
---|
199 | var node = nodes[i];
|
---|
200 | if (node is VariableTreeNode variableTreeNode) {
|
---|
201 | thetaValues.Add(variableTreeNode.Weight);
|
---|
202 | thetaNodes.Add(node);
|
---|
203 | } else if (node is ConstantTreeNode constantTreeNode) {
|
---|
204 | thetaNodes.Add(node);
|
---|
205 | thetaValues.Add(constantTreeNode.Value);
|
---|
206 | }
|
---|
207 | }
|
---|
208 | }
|
---|
209 |
|
---|
210 | public static double OptimizeConstants(ISymbolicDataAnalysisExpressionTreeInterpreter interpreter,
|
---|
211 | ISymbolicExpressionTree tree, IRegressionProblemData problemData, IEnumerable<int> rows, bool applyLinearScaling,
|
---|
212 | int maxIterations, bool updateVariableWeights = true,
|
---|
213 | double lowerEstimationLimit = double.MinValue, double upperEstimationLimit = double.MaxValue,
|
---|
214 | bool updateConstantsInTree = true, Action<double[], double, object> iterationCallback = null, EvaluationsCounter counter = null) {
|
---|
215 |
|
---|
216 | if (!updateVariableWeights) throw new NotSupportedException();
|
---|
217 |
|
---|
218 | // // numeric constants in the tree become variables for constant opt
|
---|
219 | // // variables in the tree become parameters (fixed values) for constant opt
|
---|
220 | // // for each parameter (variable in the original tree) we store the
|
---|
221 | // // variable name, variable value (for factor vars) and lag as a DataForVariable object.
|
---|
222 | // // A dictionary is used to find parameters
|
---|
223 | // double[] initialConstants;
|
---|
224 | // var parameters = new List<TreeToAutoDiffTermConverter.DataForVariable>();
|
---|
225 | //
|
---|
226 | // TreeToAutoDiffTermConverter.ParametricFunction func;
|
---|
227 | // TreeToAutoDiffTermConverter.ParametricFunctionGradient func_grad;
|
---|
228 | // if (!TreeToAutoDiffTermConverter.TryConvertToAutoDiff(tree, updateVariableWeights, applyLinearScaling, out parameters, out initialConstants, out func, out func_grad))
|
---|
229 | // throw new NotSupportedException("Could not optimize constants of symbolic expression tree due to not supported symbols used in the tree.");
|
---|
230 | // if (parameters.Count == 0) return 0.0; // gkronber: constant expressions always have a R² of 0.0
|
---|
231 | // var parameterEntries = parameters.ToArray(); // order of entries must be the same for x
|
---|
232 |
|
---|
233 |
|
---|
234 | GetParameterNodes(tree, out List<ISymbolicExpressionTreeNode> thetaNodes, out List<double> thetaValues);
|
---|
235 | var initialConstants = thetaValues.ToArray();
|
---|
236 |
|
---|
237 | //extract inital constants
|
---|
238 | double[] c;
|
---|
239 | if (applyLinearScaling) {
|
---|
240 | c = new double[initialConstants.Length + 2];
|
---|
241 | c[0] = 0.0;
|
---|
242 | c[1] = 1.0;
|
---|
243 | Array.Copy(initialConstants, 0, c, 2, initialConstants.Length);
|
---|
244 | } else {
|
---|
245 | c = (double[])initialConstants.Clone();
|
---|
246 | }
|
---|
247 |
|
---|
248 | double originalQuality = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(interpreter, tree, lowerEstimationLimit, upperEstimationLimit, problemData, rows, applyLinearScaling);
|
---|
249 |
|
---|
250 | if (counter == null) counter = new EvaluationsCounter();
|
---|
251 | var rowEvaluationsCounter = new EvaluationsCounter();
|
---|
252 |
|
---|
253 | alglib.minlmstate state;
|
---|
254 | alglib.minlmreport rep;
|
---|
255 |
|
---|
256 | IDataset ds = problemData.Dataset;
|
---|
257 | double[] y = ds.GetDoubleValues(problemData.TargetVariable, rows).ToArray();
|
---|
258 | int n = y.Length;
|
---|
259 | int k = c.Length;
|
---|
260 |
|
---|
261 | var trainRows = problemData.TrainingIndices.ToArray();
|
---|
262 | var parameterNodes = thetaNodes.ToArray();
|
---|
263 | alglib.ndimensional_fvec function_cx_1_func = CreateFunc(tree, new VectorEvaluator(), parameterNodes, ds, problemData.TargetVariable, trainRows);
|
---|
264 | alglib.ndimensional_jac function_cx_1_jac = CreateJac(tree, new VectorAutoDiffEvaluator(), parameterNodes, ds, problemData.TargetVariable, trainRows);
|
---|
265 | alglib.ndimensional_rep xrep = (p, f, obj) => iterationCallback(p, f, obj);
|
---|
266 |
|
---|
267 | try {
|
---|
268 | alglib.minlmcreatevj(n, c, out state);
|
---|
269 | alglib.minlmsetcond(state, 0.0, maxIterations);
|
---|
270 | alglib.minlmsetxrep(state, iterationCallback != null);
|
---|
271 | // alglib.minlmsetgradientcheck(state, 0.001);
|
---|
272 | alglib.minlmoptimize(state, function_cx_1_func, function_cx_1_jac, xrep, rowEvaluationsCounter);
|
---|
273 | alglib.minlmresults(state, out c, out rep);
|
---|
274 | } catch (ArithmeticException) {
|
---|
275 | return originalQuality;
|
---|
276 | } catch (alglib.alglibexception) {
|
---|
277 | return originalQuality;
|
---|
278 | }
|
---|
279 |
|
---|
280 | counter.FunctionEvaluations += rowEvaluationsCounter.FunctionEvaluations / n;
|
---|
281 | counter.GradientEvaluations += rowEvaluationsCounter.GradientEvaluations / n;
|
---|
282 |
|
---|
283 | //retVal == -7 => constant optimization failed due to wrong gradient
|
---|
284 | if (rep.terminationtype != -7) {
|
---|
285 | if (applyLinearScaling) {
|
---|
286 | var tmp = new double[c.Length - 2];
|
---|
287 | Array.Copy(c, 2, tmp, 0, tmp.Length);
|
---|
288 | UpdateConstants(parameterNodes, tmp);
|
---|
289 | } else UpdateConstants(parameterNodes, c);
|
---|
290 | }
|
---|
291 | var quality = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(interpreter, tree, lowerEstimationLimit, upperEstimationLimit, problemData, rows, applyLinearScaling);
|
---|
292 |
|
---|
293 | if (!updateConstantsInTree) UpdateConstants(parameterNodes, initialConstants);
|
---|
294 |
|
---|
295 | if (originalQuality - quality > 0.001 || double.IsNaN(quality)) {
|
---|
296 | UpdateConstants(parameterNodes, initialConstants);
|
---|
297 | return originalQuality;
|
---|
298 | }
|
---|
299 | return quality;
|
---|
300 | }
|
---|
301 |
|
---|
302 | private static void UpdateConstants(ISymbolicExpressionTreeNode[] nodes, double[] constants) {
|
---|
303 | if (nodes.Length != constants.Length) throw new InvalidOperationException();
|
---|
304 | for(int i = 0;i<nodes.Length;i++) {
|
---|
305 | if (nodes[i] is VariableTreeNode varNode) varNode.Weight = constants[i];
|
---|
306 | else if (nodes[i] is ConstantTreeNode constNode) constNode.Value = constants[i];
|
---|
307 | }
|
---|
308 | }
|
---|
309 |
|
---|
310 | private static alglib.ndimensional_fvec CreateFunc(ISymbolicExpressionTree tree, VectorEvaluator eval, ISymbolicExpressionTreeNode[] parameterNodes, IDataset ds, string targetVar, int[] rows) {
|
---|
311 | var y = ds.GetDoubleValues(targetVar, rows).ToArray();
|
---|
312 | return (double[] c, double[] fi, object o) => {
|
---|
313 | UpdateConstants(parameterNodes, c);
|
---|
314 | var pred = eval.Evaluate(tree, ds, rows);
|
---|
315 | for (int i = 0; i < fi.Length; i++)
|
---|
316 | fi[i] = pred[i] - y[i];
|
---|
317 |
|
---|
318 | var counter = (EvaluationsCounter)o;
|
---|
319 | counter.FunctionEvaluations++;
|
---|
320 | };
|
---|
321 | }
|
---|
322 |
|
---|
323 | private static alglib.ndimensional_jac CreateJac(ISymbolicExpressionTree tree, VectorAutoDiffEvaluator eval, ISymbolicExpressionTreeNode[] parameterNodes, IDataset ds, string targetVar, int[] rows) {
|
---|
324 | var y = ds.GetDoubleValues(targetVar, rows).ToArray();
|
---|
325 | return (double[] c, double[] fi, double[,] jac, object o) => {
|
---|
326 | UpdateConstants(parameterNodes, c);
|
---|
327 | eval.Evaluate(tree, ds, rows, parameterNodes, fi, jac);
|
---|
328 |
|
---|
329 | for (int i = 0; i < fi.Length; i++)
|
---|
330 | fi[i] -= y[i];
|
---|
331 |
|
---|
332 | var counter = (EvaluationsCounter)o;
|
---|
333 | counter.GradientEvaluations++;
|
---|
334 | };
|
---|
335 | }
|
---|
336 | public static bool CanOptimizeConstants(ISymbolicExpressionTree tree) {
|
---|
337 | return TreeToAutoDiffTermConverter.IsCompatible(tree);
|
---|
338 | }
|
---|
339 | }
|
---|
340 | }
|
---|