[16912] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Data;
|
---|
| 28 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 29 | using HeuristicLab.Optimization;
|
---|
| 30 | using HeuristicLab.Parameters;
|
---|
| 31 | using HEAL.Attic;
|
---|
| 32 |
|
---|
| 33 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression {
|
---|
| 34 | [Item("Constant Optimization Evaluator (new)", "Calculates Pearson R² of a symbolic regression solution and optimizes the constant used.")]
|
---|
| 35 | [StorableType("1D5361E9-EF73-47D2-9211-FDD39BBC1018")]
|
---|
| 36 | public class SymbolicRegressionNewConstantOptimizationEvaluator : SymbolicRegressionSingleObjectiveEvaluator {
|
---|
| 37 | private const string ConstantOptimizationIterationsParameterName = "ConstantOptimizationIterations";
|
---|
| 38 | private const string ConstantOptimizationImprovementParameterName = "ConstantOptimizationImprovement";
|
---|
| 39 | private const string ConstantOptimizationProbabilityParameterName = "ConstantOptimizationProbability";
|
---|
| 40 | private const string ConstantOptimizationRowsPercentageParameterName = "ConstantOptimizationRowsPercentage";
|
---|
| 41 | private const string UpdateConstantsInTreeParameterName = "UpdateConstantsInSymbolicExpressionTree";
|
---|
| 42 | private const string UpdateVariableWeightsParameterName = "Update Variable Weights";
|
---|
| 43 |
|
---|
| 44 | private const string FunctionEvaluationsResultParameterName = "Constants Optimization Function Evaluations";
|
---|
| 45 | private const string GradientEvaluationsResultParameterName = "Constants Optimization Gradient Evaluations";
|
---|
| 46 | private const string CountEvaluationsParameterName = "Count Function and Gradient Evaluations";
|
---|
| 47 |
|
---|
| 48 | public IFixedValueParameter<IntValue> ConstantOptimizationIterationsParameter {
|
---|
| 49 | get { return (IFixedValueParameter<IntValue>)Parameters[ConstantOptimizationIterationsParameterName]; }
|
---|
| 50 | }
|
---|
| 51 | public IFixedValueParameter<DoubleValue> ConstantOptimizationImprovementParameter {
|
---|
| 52 | get { return (IFixedValueParameter<DoubleValue>)Parameters[ConstantOptimizationImprovementParameterName]; }
|
---|
| 53 | }
|
---|
| 54 | public IFixedValueParameter<PercentValue> ConstantOptimizationProbabilityParameter {
|
---|
| 55 | get { return (IFixedValueParameter<PercentValue>)Parameters[ConstantOptimizationProbabilityParameterName]; }
|
---|
| 56 | }
|
---|
| 57 | public IFixedValueParameter<PercentValue> ConstantOptimizationRowsPercentageParameter {
|
---|
| 58 | get { return (IFixedValueParameter<PercentValue>)Parameters[ConstantOptimizationRowsPercentageParameterName]; }
|
---|
| 59 | }
|
---|
| 60 | public IFixedValueParameter<BoolValue> UpdateConstantsInTreeParameter {
|
---|
| 61 | get { return (IFixedValueParameter<BoolValue>)Parameters[UpdateConstantsInTreeParameterName]; }
|
---|
| 62 | }
|
---|
| 63 | public IFixedValueParameter<BoolValue> UpdateVariableWeightsParameter {
|
---|
| 64 | get { return (IFixedValueParameter<BoolValue>)Parameters[UpdateVariableWeightsParameterName]; }
|
---|
| 65 | }
|
---|
| 66 |
|
---|
| 67 | public IResultParameter<IntValue> FunctionEvaluationsResultParameter {
|
---|
| 68 | get { return (IResultParameter<IntValue>)Parameters[FunctionEvaluationsResultParameterName]; }
|
---|
| 69 | }
|
---|
| 70 | public IResultParameter<IntValue> GradientEvaluationsResultParameter {
|
---|
| 71 | get { return (IResultParameter<IntValue>)Parameters[GradientEvaluationsResultParameterName]; }
|
---|
| 72 | }
|
---|
| 73 | public IFixedValueParameter<BoolValue> CountEvaluationsParameter {
|
---|
| 74 | get { return (IFixedValueParameter<BoolValue>)Parameters[CountEvaluationsParameterName]; }
|
---|
| 75 | }
|
---|
| 76 |
|
---|
| 77 |
|
---|
| 78 | public IntValue ConstantOptimizationIterations {
|
---|
| 79 | get { return ConstantOptimizationIterationsParameter.Value; }
|
---|
| 80 | }
|
---|
| 81 | public DoubleValue ConstantOptimizationImprovement {
|
---|
| 82 | get { return ConstantOptimizationImprovementParameter.Value; }
|
---|
| 83 | }
|
---|
| 84 | public PercentValue ConstantOptimizationProbability {
|
---|
| 85 | get { return ConstantOptimizationProbabilityParameter.Value; }
|
---|
| 86 | }
|
---|
| 87 | public PercentValue ConstantOptimizationRowsPercentage {
|
---|
| 88 | get { return ConstantOptimizationRowsPercentageParameter.Value; }
|
---|
| 89 | }
|
---|
| 90 | public bool UpdateConstantsInTree {
|
---|
| 91 | get { return UpdateConstantsInTreeParameter.Value.Value; }
|
---|
| 92 | set { UpdateConstantsInTreeParameter.Value.Value = value; }
|
---|
| 93 | }
|
---|
| 94 |
|
---|
| 95 | public bool UpdateVariableWeights {
|
---|
| 96 | get { return UpdateVariableWeightsParameter.Value.Value; }
|
---|
| 97 | set { UpdateVariableWeightsParameter.Value.Value = value; }
|
---|
| 98 | }
|
---|
| 99 |
|
---|
| 100 | public bool CountEvaluations {
|
---|
| 101 | get { return CountEvaluationsParameter.Value.Value; }
|
---|
| 102 | set { CountEvaluationsParameter.Value.Value = value; }
|
---|
| 103 | }
|
---|
| 104 |
|
---|
| 105 | public override bool Maximization {
|
---|
| 106 | get { return true; }
|
---|
| 107 | }
|
---|
| 108 |
|
---|
| 109 | [StorableConstructor]
|
---|
| 110 | protected SymbolicRegressionNewConstantOptimizationEvaluator(StorableConstructorFlag _) : base(_) { }
|
---|
| 111 | protected SymbolicRegressionNewConstantOptimizationEvaluator(SymbolicRegressionNewConstantOptimizationEvaluator original, Cloner cloner)
|
---|
| 112 | : base(original, cloner) {
|
---|
| 113 | }
|
---|
| 114 | public SymbolicRegressionNewConstantOptimizationEvaluator()
|
---|
| 115 | : base() {
|
---|
| 116 | Parameters.Add(new FixedValueParameter<IntValue>(ConstantOptimizationIterationsParameterName, "Determines how many iterations should be calculated while optimizing the constant of a symbolic expression tree (0 indicates other or default stopping criterion).", new IntValue(10)));
|
---|
| 117 | Parameters.Add(new FixedValueParameter<DoubleValue>(ConstantOptimizationImprovementParameterName, "Determines the relative improvement which must be achieved in the constant optimization to continue with it (0 indicates other or default stopping criterion).", new DoubleValue(0)) { Hidden = true });
|
---|
| 118 | Parameters.Add(new FixedValueParameter<PercentValue>(ConstantOptimizationProbabilityParameterName, "Determines the probability that the constants are optimized", new PercentValue(1)));
|
---|
| 119 | Parameters.Add(new FixedValueParameter<PercentValue>(ConstantOptimizationRowsPercentageParameterName, "Determines the percentage of the rows which should be used for constant optimization", new PercentValue(1)));
|
---|
| 120 | Parameters.Add(new FixedValueParameter<BoolValue>(UpdateConstantsInTreeParameterName, "Determines if the constants in the tree should be overwritten by the optimized constants.", new BoolValue(true)) { Hidden = true });
|
---|
| 121 | Parameters.Add(new FixedValueParameter<BoolValue>(UpdateVariableWeightsParameterName, "Determines if the variable weights in the tree should be optimized.", new BoolValue(true)) { Hidden = true });
|
---|
| 122 |
|
---|
| 123 | Parameters.Add(new FixedValueParameter<BoolValue>(CountEvaluationsParameterName, "Determines if function and gradient evaluation should be counted.", new BoolValue(false)));
|
---|
| 124 | Parameters.Add(new ResultParameter<IntValue>(FunctionEvaluationsResultParameterName, "The number of function evaluations performed by the constants optimization evaluator", "Results", new IntValue()));
|
---|
| 125 | Parameters.Add(new ResultParameter<IntValue>(GradientEvaluationsResultParameterName, "The number of gradient evaluations performed by the constants optimization evaluator", "Results", new IntValue()));
|
---|
| 126 | }
|
---|
| 127 |
|
---|
| 128 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 129 | return new SymbolicRegressionNewConstantOptimizationEvaluator(this, cloner);
|
---|
| 130 | }
|
---|
| 131 |
|
---|
| 132 | [StorableHook(HookType.AfterDeserialization)]
|
---|
| 133 | private void AfterDeserialization() { }
|
---|
| 134 |
|
---|
| 135 | private static readonly object locker = new object();
|
---|
| 136 |
|
---|
| 137 | public override IOperation InstrumentedApply() {
|
---|
| 138 | var solution = SymbolicExpressionTreeParameter.ActualValue;
|
---|
| 139 | double quality;
|
---|
| 140 | if (RandomParameter.ActualValue.NextDouble() < ConstantOptimizationProbability.Value) {
|
---|
| 141 | IEnumerable<int> constantOptimizationRows = GenerateRowsToEvaluate(ConstantOptimizationRowsPercentage.Value);
|
---|
| 142 | var counter = new EvaluationsCounter();
|
---|
| 143 | quality = OptimizeConstants(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, solution, ProblemDataParameter.ActualValue,
|
---|
| 144 | constantOptimizationRows, ApplyLinearScalingParameter.ActualValue.Value, ConstantOptimizationIterations.Value, updateVariableWeights: UpdateVariableWeights, lowerEstimationLimit: EstimationLimitsParameter.ActualValue.Lower, upperEstimationLimit: EstimationLimitsParameter.ActualValue.Upper, updateConstantsInTree: UpdateConstantsInTree, counter: counter);
|
---|
| 145 |
|
---|
| 146 | if (ConstantOptimizationRowsPercentage.Value != RelativeNumberOfEvaluatedSamplesParameter.ActualValue.Value) {
|
---|
| 147 | var evaluationRows = GenerateRowsToEvaluate();
|
---|
| 148 | quality = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, solution, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, ProblemDataParameter.ActualValue, evaluationRows, ApplyLinearScalingParameter.ActualValue.Value);
|
---|
| 149 | }
|
---|
| 150 |
|
---|
| 151 | if (CountEvaluations) {
|
---|
| 152 | lock (locker) {
|
---|
| 153 | FunctionEvaluationsResultParameter.ActualValue.Value += counter.FunctionEvaluations;
|
---|
| 154 | GradientEvaluationsResultParameter.ActualValue.Value += counter.GradientEvaluations;
|
---|
| 155 | }
|
---|
| 156 | }
|
---|
| 157 |
|
---|
| 158 | } else {
|
---|
| 159 | var evaluationRows = GenerateRowsToEvaluate();
|
---|
| 160 | quality = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, solution, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, ProblemDataParameter.ActualValue, evaluationRows, ApplyLinearScalingParameter.ActualValue.Value);
|
---|
| 161 | }
|
---|
| 162 | QualityParameter.ActualValue = new DoubleValue(quality);
|
---|
| 163 |
|
---|
| 164 | return base.InstrumentedApply();
|
---|
| 165 | }
|
---|
| 166 |
|
---|
| 167 | public override double Evaluate(IExecutionContext context, ISymbolicExpressionTree tree, IRegressionProblemData problemData, IEnumerable<int> rows) {
|
---|
| 168 | SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = context;
|
---|
| 169 | EstimationLimitsParameter.ExecutionContext = context;
|
---|
| 170 | ApplyLinearScalingParameter.ExecutionContext = context;
|
---|
| 171 | FunctionEvaluationsResultParameter.ExecutionContext = context;
|
---|
| 172 | GradientEvaluationsResultParameter.ExecutionContext = context;
|
---|
| 173 |
|
---|
| 174 | // Pearson R² evaluator is used on purpose instead of the const-opt evaluator,
|
---|
| 175 | // because Evaluate() is used to get the quality of evolved models on
|
---|
| 176 | // different partitions of the dataset (e.g., best validation model)
|
---|
| 177 | double r2 = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, tree, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, problemData, rows, ApplyLinearScalingParameter.ActualValue.Value);
|
---|
| 178 |
|
---|
| 179 | SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = null;
|
---|
| 180 | EstimationLimitsParameter.ExecutionContext = null;
|
---|
| 181 | ApplyLinearScalingParameter.ExecutionContext = null;
|
---|
| 182 | FunctionEvaluationsResultParameter.ExecutionContext = null;
|
---|
| 183 | GradientEvaluationsResultParameter.ExecutionContext = null;
|
---|
| 184 |
|
---|
| 185 | return r2;
|
---|
| 186 | }
|
---|
| 187 |
|
---|
| 188 | public class EvaluationsCounter {
|
---|
| 189 | public int FunctionEvaluations = 0;
|
---|
| 190 | public int GradientEvaluations = 0;
|
---|
| 191 | }
|
---|
| 192 |
|
---|
| 193 | private static void GetParameterNodes(ISymbolicExpressionTree tree, out List<ISymbolicExpressionTreeNode> thetaNodes, out List<double> thetaValues) {
|
---|
| 194 | thetaNodes = new List<ISymbolicExpressionTreeNode>();
|
---|
| 195 | thetaValues = new List<double>();
|
---|
| 196 |
|
---|
| 197 | var nodes = tree.IterateNodesPrefix().ToArray();
|
---|
| 198 | for (int i = 0; i < nodes.Length; ++i) {
|
---|
| 199 | var node = nodes[i];
|
---|
| 200 | if (node is VariableTreeNode variableTreeNode) {
|
---|
| 201 | thetaValues.Add(variableTreeNode.Weight);
|
---|
| 202 | thetaNodes.Add(node);
|
---|
| 203 | } else if (node is ConstantTreeNode constantTreeNode) {
|
---|
| 204 | thetaNodes.Add(node);
|
---|
| 205 | thetaValues.Add(constantTreeNode.Value);
|
---|
| 206 | }
|
---|
| 207 | }
|
---|
| 208 | }
|
---|
| 209 |
|
---|
| 210 | public static double OptimizeConstants(ISymbolicDataAnalysisExpressionTreeInterpreter interpreter,
|
---|
| 211 | ISymbolicExpressionTree tree, IRegressionProblemData problemData, IEnumerable<int> rows, bool applyLinearScaling,
|
---|
| 212 | int maxIterations, bool updateVariableWeights = true,
|
---|
| 213 | double lowerEstimationLimit = double.MinValue, double upperEstimationLimit = double.MaxValue,
|
---|
| 214 | bool updateConstantsInTree = true, Action<double[], double, object> iterationCallback = null, EvaluationsCounter counter = null) {
|
---|
| 215 |
|
---|
| 216 | if (!updateVariableWeights) throw new NotSupportedException();
|
---|
| 217 |
|
---|
| 218 | // // numeric constants in the tree become variables for constant opt
|
---|
| 219 | // // variables in the tree become parameters (fixed values) for constant opt
|
---|
| 220 | // // for each parameter (variable in the original tree) we store the
|
---|
| 221 | // // variable name, variable value (for factor vars) and lag as a DataForVariable object.
|
---|
| 222 | // // A dictionary is used to find parameters
|
---|
| 223 | // double[] initialConstants;
|
---|
| 224 | // var parameters = new List<TreeToAutoDiffTermConverter.DataForVariable>();
|
---|
| 225 | //
|
---|
| 226 | // TreeToAutoDiffTermConverter.ParametricFunction func;
|
---|
| 227 | // TreeToAutoDiffTermConverter.ParametricFunctionGradient func_grad;
|
---|
| 228 | // if (!TreeToAutoDiffTermConverter.TryConvertToAutoDiff(tree, updateVariableWeights, applyLinearScaling, out parameters, out initialConstants, out func, out func_grad))
|
---|
| 229 | // throw new NotSupportedException("Could not optimize constants of symbolic expression tree due to not supported symbols used in the tree.");
|
---|
| 230 | // if (parameters.Count == 0) return 0.0; // gkronber: constant expressions always have a R² of 0.0
|
---|
| 231 | // var parameterEntries = parameters.ToArray(); // order of entries must be the same for x
|
---|
| 232 |
|
---|
| 233 |
|
---|
| 234 | GetParameterNodes(tree, out List<ISymbolicExpressionTreeNode> thetaNodes, out List<double> thetaValues);
|
---|
| 235 | var initialConstants = thetaValues.ToArray();
|
---|
| 236 |
|
---|
| 237 | //extract inital constants
|
---|
| 238 | double[] c;
|
---|
| 239 | if (applyLinearScaling) {
|
---|
| 240 | c = new double[initialConstants.Length + 2];
|
---|
| 241 | c[0] = 0.0;
|
---|
| 242 | c[1] = 1.0;
|
---|
| 243 | Array.Copy(initialConstants, 0, c, 2, initialConstants.Length);
|
---|
| 244 | } else {
|
---|
| 245 | c = (double[])initialConstants.Clone();
|
---|
| 246 | }
|
---|
| 247 |
|
---|
| 248 | double originalQuality = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(interpreter, tree, lowerEstimationLimit, upperEstimationLimit, problemData, rows, applyLinearScaling);
|
---|
| 249 |
|
---|
| 250 | if (counter == null) counter = new EvaluationsCounter();
|
---|
| 251 | var rowEvaluationsCounter = new EvaluationsCounter();
|
---|
| 252 |
|
---|
| 253 | alglib.minlmstate state;
|
---|
| 254 | alglib.minlmreport rep;
|
---|
| 255 |
|
---|
| 256 | IDataset ds = problemData.Dataset;
|
---|
| 257 | double[] y = ds.GetDoubleValues(problemData.TargetVariable, rows).ToArray();
|
---|
| 258 | int n = y.Length;
|
---|
| 259 | int k = c.Length;
|
---|
| 260 |
|
---|
| 261 | var trainRows = problemData.TrainingIndices.ToArray();
|
---|
| 262 | var parameterNodes = thetaNodes.ToArray();
|
---|
| 263 | alglib.ndimensional_fvec function_cx_1_func = CreateFunc(tree, new VectorEvaluator(), parameterNodes, ds, problemData.TargetVariable, trainRows);
|
---|
| 264 | alglib.ndimensional_jac function_cx_1_jac = CreateJac(tree, new VectorAutoDiffEvaluator(), parameterNodes, ds, problemData.TargetVariable, trainRows);
|
---|
| 265 | alglib.ndimensional_rep xrep = (p, f, obj) => iterationCallback(p, f, obj);
|
---|
| 266 |
|
---|
| 267 | try {
|
---|
| 268 | alglib.minlmcreatevj(n, c, out state);
|
---|
| 269 | alglib.minlmsetcond(state, 0.0, maxIterations);
|
---|
| 270 | alglib.minlmsetxrep(state, iterationCallback != null);
|
---|
| 271 | // alglib.minlmsetgradientcheck(state, 0.001);
|
---|
| 272 | alglib.minlmoptimize(state, function_cx_1_func, function_cx_1_jac, xrep, rowEvaluationsCounter);
|
---|
| 273 | alglib.minlmresults(state, out c, out rep);
|
---|
| 274 | } catch (ArithmeticException) {
|
---|
| 275 | return originalQuality;
|
---|
| 276 | } catch (alglib.alglibexception) {
|
---|
| 277 | return originalQuality;
|
---|
| 278 | }
|
---|
| 279 |
|
---|
| 280 | counter.FunctionEvaluations += rowEvaluationsCounter.FunctionEvaluations / n;
|
---|
| 281 | counter.GradientEvaluations += rowEvaluationsCounter.GradientEvaluations / n;
|
---|
| 282 |
|
---|
| 283 | //retVal == -7 => constant optimization failed due to wrong gradient
|
---|
| 284 | if (rep.terminationtype != -7) {
|
---|
| 285 | if (applyLinearScaling) {
|
---|
| 286 | var tmp = new double[c.Length - 2];
|
---|
| 287 | Array.Copy(c, 2, tmp, 0, tmp.Length);
|
---|
| 288 | UpdateConstants(parameterNodes, tmp);
|
---|
| 289 | } else UpdateConstants(parameterNodes, c);
|
---|
| 290 | }
|
---|
| 291 | var quality = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(interpreter, tree, lowerEstimationLimit, upperEstimationLimit, problemData, rows, applyLinearScaling);
|
---|
| 292 |
|
---|
| 293 | if (!updateConstantsInTree) UpdateConstants(parameterNodes, initialConstants);
|
---|
| 294 |
|
---|
| 295 | if (originalQuality - quality > 0.001 || double.IsNaN(quality)) {
|
---|
| 296 | UpdateConstants(parameterNodes, initialConstants);
|
---|
| 297 | return originalQuality;
|
---|
| 298 | }
|
---|
| 299 | return quality;
|
---|
| 300 | }
|
---|
| 301 |
|
---|
| 302 | private static void UpdateConstants(ISymbolicExpressionTreeNode[] nodes, double[] constants) {
|
---|
| 303 | if (nodes.Length != constants.Length) throw new InvalidOperationException();
|
---|
| 304 | for(int i = 0;i<nodes.Length;i++) {
|
---|
| 305 | if (nodes[i] is VariableTreeNode varNode) varNode.Weight = constants[i];
|
---|
| 306 | else if (nodes[i] is ConstantTreeNode constNode) constNode.Value = constants[i];
|
---|
| 307 | }
|
---|
| 308 | }
|
---|
| 309 |
|
---|
| 310 | private static alglib.ndimensional_fvec CreateFunc(ISymbolicExpressionTree tree, VectorEvaluator eval, ISymbolicExpressionTreeNode[] parameterNodes, IDataset ds, string targetVar, int[] rows) {
|
---|
| 311 | var y = ds.GetDoubleValues(targetVar, rows).ToArray();
|
---|
| 312 | return (double[] c, double[] fi, object o) => {
|
---|
| 313 | UpdateConstants(parameterNodes, c);
|
---|
| 314 | var pred = eval.Evaluate(tree, ds, rows);
|
---|
| 315 | for (int i = 0; i < fi.Length; i++)
|
---|
| 316 | fi[i] = pred[i] - y[i];
|
---|
| 317 |
|
---|
| 318 | var counter = (EvaluationsCounter)o;
|
---|
| 319 | counter.FunctionEvaluations++;
|
---|
| 320 | };
|
---|
| 321 | }
|
---|
| 322 |
|
---|
| 323 | private static alglib.ndimensional_jac CreateJac(ISymbolicExpressionTree tree, VectorAutoDiffEvaluator eval, ISymbolicExpressionTreeNode[] parameterNodes, IDataset ds, string targetVar, int[] rows) {
|
---|
| 324 | var y = ds.GetDoubleValues(targetVar, rows).ToArray();
|
---|
| 325 | return (double[] c, double[] fi, double[,] jac, object o) => {
|
---|
| 326 | UpdateConstants(parameterNodes, c);
|
---|
| 327 | eval.Evaluate(tree, ds, rows, parameterNodes, fi, jac);
|
---|
| 328 |
|
---|
| 329 | for (int i = 0; i < fi.Length; i++)
|
---|
| 330 | fi[i] -= y[i];
|
---|
| 331 |
|
---|
| 332 | var counter = (EvaluationsCounter)o;
|
---|
| 333 | counter.GradientEvaluations++;
|
---|
| 334 | };
|
---|
| 335 | }
|
---|
| 336 | public static bool CanOptimizeConstants(ISymbolicExpressionTree tree) {
|
---|
| 337 | return TreeToAutoDiffTermConverter.IsCompatible(tree);
|
---|
| 338 | }
|
---|
| 339 | }
|
---|
| 340 | }
|
---|