Free cookie consent management tool by TermsFeed Policy Generator

source: branches/2994-AutoDiffForIntervals/HeuristicLab.Problems.DataAnalysis.Regression.Symbolic.Extensions/NLOptEvaluator.cs @ 17270

Last change on this file since 17270 was 17215, checked in by gkronber, 5 years ago

#2994: use new code for NLOpt in the NLOpt evaluator

File size: 13.0 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using HeuristicLab.Common;
26using HeuristicLab.Core;
27using HeuristicLab.Data;
28using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
29using HeuristicLab.Optimization;
30using HeuristicLab.Parameters;
31using HEAL.Attic;
32using System.Runtime.InteropServices;
33
34namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression {
35  [Item("NLOpt Evaluator (with constraints)", "")]
36  [StorableType("5FADAE55-3516-4539-8A36-BC9B0D00880D")]
37  public class NLOptEvaluator : SymbolicRegressionSingleObjectiveEvaluator {
38    private const string ConstantOptimizationIterationsParameterName = "ConstantOptimizationIterations";
39    private const string ConstantOptimizationImprovementParameterName = "ConstantOptimizationImprovement";
40    private const string ConstantOptimizationProbabilityParameterName = "ConstantOptimizationProbability";
41    private const string ConstantOptimizationRowsPercentageParameterName = "ConstantOptimizationRowsPercentage";
42    private const string UpdateConstantsInTreeParameterName = "UpdateConstantsInSymbolicExpressionTree";
43    private const string UpdateVariableWeightsParameterName = "Update Variable Weights";
44
45    private const string FunctionEvaluationsResultParameterName = "Constants Optimization Function Evaluations";
46    private const string GradientEvaluationsResultParameterName = "Constants Optimization Gradient Evaluations";
47    private const string CountEvaluationsParameterName = "Count Function and Gradient Evaluations";
48
49    public IFixedValueParameter<IntValue> ConstantOptimizationIterationsParameter {
50      get { return (IFixedValueParameter<IntValue>)Parameters[ConstantOptimizationIterationsParameterName]; }
51    }
52    public IFixedValueParameter<DoubleValue> ConstantOptimizationImprovementParameter {
53      get { return (IFixedValueParameter<DoubleValue>)Parameters[ConstantOptimizationImprovementParameterName]; }
54    }
55    public IFixedValueParameter<PercentValue> ConstantOptimizationProbabilityParameter {
56      get { return (IFixedValueParameter<PercentValue>)Parameters[ConstantOptimizationProbabilityParameterName]; }
57    }
58    public IFixedValueParameter<PercentValue> ConstantOptimizationRowsPercentageParameter {
59      get { return (IFixedValueParameter<PercentValue>)Parameters[ConstantOptimizationRowsPercentageParameterName]; }
60    }
61    public IFixedValueParameter<BoolValue> UpdateConstantsInTreeParameter {
62      get { return (IFixedValueParameter<BoolValue>)Parameters[UpdateConstantsInTreeParameterName]; }
63    }
64    public IFixedValueParameter<BoolValue> UpdateVariableWeightsParameter {
65      get { return (IFixedValueParameter<BoolValue>)Parameters[UpdateVariableWeightsParameterName]; }
66    }
67
68    public IResultParameter<IntValue> FunctionEvaluationsResultParameter {
69      get { return (IResultParameter<IntValue>)Parameters[FunctionEvaluationsResultParameterName]; }
70    }
71    public IResultParameter<IntValue> GradientEvaluationsResultParameter {
72      get { return (IResultParameter<IntValue>)Parameters[GradientEvaluationsResultParameterName]; }
73    }
74    public IFixedValueParameter<BoolValue> CountEvaluationsParameter {
75      get { return (IFixedValueParameter<BoolValue>)Parameters[CountEvaluationsParameterName]; }
76    }
77    public IConstrainedValueParameter<StringValue> SolverParameter {
78      get { return (IConstrainedValueParameter<StringValue>)Parameters["Solver"]; }
79    }
80
81
82    public IntValue ConstantOptimizationIterations {
83      get { return ConstantOptimizationIterationsParameter.Value; }
84    }
85    public DoubleValue ConstantOptimizationImprovement {
86      get { return ConstantOptimizationImprovementParameter.Value; }
87    }
88    public PercentValue ConstantOptimizationProbability {
89      get { return ConstantOptimizationProbabilityParameter.Value; }
90    }
91    public PercentValue ConstantOptimizationRowsPercentage {
92      get { return ConstantOptimizationRowsPercentageParameter.Value; }
93    }
94    public bool UpdateConstantsInTree {
95      get { return UpdateConstantsInTreeParameter.Value.Value; }
96      set { UpdateConstantsInTreeParameter.Value.Value = value; }
97    }
98
99    public bool UpdateVariableWeights {
100      get { return UpdateVariableWeightsParameter.Value.Value; }
101      set { UpdateVariableWeightsParameter.Value.Value = value; }
102    }
103
104    public bool CountEvaluations {
105      get { return CountEvaluationsParameter.Value.Value; }
106      set { CountEvaluationsParameter.Value.Value = value; }
107    }
108
109    public string Solver {
110      get { return SolverParameter.Value.Value; }
111    }
112    public override bool Maximization {
113      get { return false; }
114    }
115
116    [StorableConstructor]
117    protected NLOptEvaluator(StorableConstructorFlag _) : base(_) { }
118    protected NLOptEvaluator(NLOptEvaluator original, Cloner cloner)
119      : base(original, cloner) {
120    }
121    public NLOptEvaluator()
122      : base() {
123      Parameters.Add(new FixedValueParameter<IntValue>(ConstantOptimizationIterationsParameterName, "Determines how many iterations should be calculated while optimizing the constant of a symbolic expression tree (0 indicates other or default stopping criterion).", new IntValue(10)));
124      Parameters.Add(new FixedValueParameter<DoubleValue>(ConstantOptimizationImprovementParameterName, "Determines the relative improvement which must be achieved in the constant optimization to continue with it (0 indicates other or default stopping criterion).", new DoubleValue(0)) { Hidden = true });
125      Parameters.Add(new FixedValueParameter<PercentValue>(ConstantOptimizationProbabilityParameterName, "Determines the probability that the constants are optimized", new PercentValue(1)));
126      Parameters.Add(new FixedValueParameter<PercentValue>(ConstantOptimizationRowsPercentageParameterName, "Determines the percentage of the rows which should be used for constant optimization", new PercentValue(1)));
127      Parameters.Add(new FixedValueParameter<BoolValue>(UpdateConstantsInTreeParameterName, "Determines if the constants in the tree should be overwritten by the optimized constants.", new BoolValue(true)) { Hidden = true });
128      Parameters.Add(new FixedValueParameter<BoolValue>(UpdateVariableWeightsParameterName, "Determines if the variable weights in the tree should be  optimized.", new BoolValue(true)) { Hidden = true });
129
130      Parameters.Add(new FixedValueParameter<BoolValue>(CountEvaluationsParameterName, "Determines if function and gradient evaluation should be counted.", new BoolValue(false)));
131
132      var validSolvers = new ItemSet<StringValue>(new[] { "MMA", "COBYLA", "CCSAQ", "ISRES" }.Select(s => new StringValue(s).AsReadOnly()));
133      Parameters.Add(new ConstrainedValueParameter<StringValue>("Solver", "The solver algorithm", validSolvers, validSolvers.First()));
134      Parameters.Add(new ResultParameter<IntValue>(FunctionEvaluationsResultParameterName, "The number of function evaluations performed by the constants optimization evaluator", "Results", new IntValue()));
135      Parameters.Add(new ResultParameter<IntValue>(GradientEvaluationsResultParameterName, "The number of gradient evaluations performed by the constants optimization evaluator", "Results", new IntValue()));
136    }
137
138    public override IDeepCloneable Clone(Cloner cloner) {
139      return new NLOptEvaluator(this, cloner);
140    }
141
142    [StorableHook(HookType.AfterDeserialization)]
143    private void AfterDeserialization() { }
144
145    private static readonly object locker = new object();
146
147    public override IOperation InstrumentedApply() {
148      var solution = SymbolicExpressionTreeParameter.ActualValue;
149      double quality;
150      if (RandomParameter.ActualValue.NextDouble() < ConstantOptimizationProbability.Value) {
151        IEnumerable<int> constantOptimizationRows = GenerateRowsToEvaluate(ConstantOptimizationRowsPercentage.Value);
152        var counter = new EvaluationsCounter();
153        quality = OptimizeConstants(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, solution, ProblemDataParameter.ActualValue,
154           constantOptimizationRows, ApplyLinearScalingParameter.ActualValue.Value, Solver, ConstantOptimizationIterations.Value, updateVariableWeights: UpdateVariableWeights, lowerEstimationLimit: EstimationLimitsParameter.ActualValue.Lower, upperEstimationLimit: EstimationLimitsParameter.ActualValue.Upper, updateConstantsInTree: UpdateConstantsInTree, counter: counter);
155
156        if (ConstantOptimizationRowsPercentage.Value != RelativeNumberOfEvaluatedSamplesParameter.ActualValue.Value) {
157          throw new NotSupportedException();
158        }
159
160        if (CountEvaluations) {
161          lock (locker) {
162            FunctionEvaluationsResultParameter.ActualValue.Value += counter.FunctionEvaluations;
163            GradientEvaluationsResultParameter.ActualValue.Value += counter.GradientEvaluations;
164          }
165        }
166
167      } else {
168        throw new NotSupportedException();
169      }
170      QualityParameter.ActualValue = new DoubleValue(quality);
171
172      return base.InstrumentedApply();
173    }
174
175    public override double Evaluate(IExecutionContext context, ISymbolicExpressionTree tree, IRegressionProblemData problemData, IEnumerable<int> rows) {
176      SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = context;
177      EstimationLimitsParameter.ExecutionContext = context;
178      ApplyLinearScalingParameter.ExecutionContext = context;
179      FunctionEvaluationsResultParameter.ExecutionContext = context;
180      GradientEvaluationsResultParameter.ExecutionContext = context;
181
182      // MSE evaluator is used on purpose instead of the const-opt evaluator,
183      // because Evaluate() is used to get the quality of evolved models on
184      // different partitions of the dataset (e.g., best validation model)
185      double mse = SymbolicRegressionSingleObjectiveMeanSquaredErrorEvaluator.Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, tree, double.MinValue, double.MaxValue, problemData, rows, applyLinearScaling: false);
186
187      SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = null;
188      EstimationLimitsParameter.ExecutionContext = null;
189      ApplyLinearScalingParameter.ExecutionContext = null;
190      FunctionEvaluationsResultParameter.ExecutionContext = null;
191      GradientEvaluationsResultParameter.ExecutionContext = null;
192
193      return mse;
194    }
195
196    public class EvaluationsCounter {
197      public int FunctionEvaluations = 0;
198      public int GradientEvaluations = 0;
199    }
200
201    private static void GetParameterNodes(ISymbolicExpressionTree tree, out List<ISymbolicExpressionTreeNode> thetaNodes, out List<double> thetaValues) {
202      thetaNodes = new List<ISymbolicExpressionTreeNode>();
203      thetaValues = new List<double>();
204
205      var nodes = tree.IterateNodesPrefix().ToArray();
206      for (int i = 0; i < nodes.Length; ++i) {
207        var node = nodes[i];
208        if (node is VariableTreeNode variableTreeNode) {
209          thetaValues.Add(variableTreeNode.Weight);
210          thetaNodes.Add(node);
211        } else if (node is ConstantTreeNode constantTreeNode) {
212          thetaNodes.Add(node);
213          thetaValues.Add(constantTreeNode.Value);
214        }
215      }
216    }
217
218
219    public static double OptimizeConstants(ISymbolicDataAnalysisExpressionTreeInterpreter interpreter,
220      ISymbolicExpressionTree tree, IRegressionProblemData problemData, IEnumerable<int> rows, bool applyLinearScaling,
221      string solver,
222      int maxIterations, bool updateVariableWeights = true,
223      double lowerEstimationLimit = double.MinValue, double upperEstimationLimit = double.MaxValue,
224      bool updateConstantsInTree = true, Action<double[], double, object> iterationCallback = null, EvaluationsCounter counter = null) {
225
226      if (!updateVariableWeights) throw new NotSupportedException("not updating variable weights is not supported");
227      if (!updateConstantsInTree) throw new NotSupportedException("not updating tree parameters is not supported");
228      if (!applyLinearScaling) throw new NotSupportedException("application without linear scaling is not supported");
229
230
231      using (var state = new ConstrainedNLSInternal(solver, tree, maxIterations, problemData, 0, 0, 0)) {
232        state.Optimize();
233        return state.BestError;
234      }
235    }
236
237
238  }
239}
Note: See TracBrowser for help on using the repository browser.