1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
29 | using HeuristicLab.Optimization;
|
---|
30 | using HeuristicLab.Parameters;
|
---|
31 | using HEAL.Attic;
|
---|
32 |
|
---|
33 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression {
|
---|
34 | [Item("Constant Optimization Evaluator (with constraints)", "")]
|
---|
35 | [StorableType("A8958E06-C54A-4193-862E-8315C86EB5C1")]
|
---|
36 | public class ConstrainedConstantOptimizationEvaluator : SymbolicRegressionSingleObjectiveEvaluator {
|
---|
37 | private const string ConstantOptimizationIterationsParameterName = "ConstantOptimizationIterations";
|
---|
38 | private const string ConstantOptimizationImprovementParameterName = "ConstantOptimizationImprovement";
|
---|
39 | private const string ConstantOptimizationProbabilityParameterName = "ConstantOptimizationProbability";
|
---|
40 | private const string ConstantOptimizationRowsPercentageParameterName = "ConstantOptimizationRowsPercentage";
|
---|
41 | private const string UpdateConstantsInTreeParameterName = "UpdateConstantsInSymbolicExpressionTree";
|
---|
42 | private const string UpdateVariableWeightsParameterName = "Update Variable Weights";
|
---|
43 |
|
---|
44 | private const string FunctionEvaluationsResultParameterName = "Constants Optimization Function Evaluations";
|
---|
45 | private const string GradientEvaluationsResultParameterName = "Constants Optimization Gradient Evaluations";
|
---|
46 | private const string CountEvaluationsParameterName = "Count Function and Gradient Evaluations";
|
---|
47 |
|
---|
48 | public IFixedValueParameter<IntValue> ConstantOptimizationIterationsParameter {
|
---|
49 | get { return (IFixedValueParameter<IntValue>)Parameters[ConstantOptimizationIterationsParameterName]; }
|
---|
50 | }
|
---|
51 | public IFixedValueParameter<DoubleValue> ConstantOptimizationImprovementParameter {
|
---|
52 | get { return (IFixedValueParameter<DoubleValue>)Parameters[ConstantOptimizationImprovementParameterName]; }
|
---|
53 | }
|
---|
54 | public IFixedValueParameter<PercentValue> ConstantOptimizationProbabilityParameter {
|
---|
55 | get { return (IFixedValueParameter<PercentValue>)Parameters[ConstantOptimizationProbabilityParameterName]; }
|
---|
56 | }
|
---|
57 | public IFixedValueParameter<PercentValue> ConstantOptimizationRowsPercentageParameter {
|
---|
58 | get { return (IFixedValueParameter<PercentValue>)Parameters[ConstantOptimizationRowsPercentageParameterName]; }
|
---|
59 | }
|
---|
60 | public IFixedValueParameter<BoolValue> UpdateConstantsInTreeParameter {
|
---|
61 | get { return (IFixedValueParameter<BoolValue>)Parameters[UpdateConstantsInTreeParameterName]; }
|
---|
62 | }
|
---|
63 | public IFixedValueParameter<BoolValue> UpdateVariableWeightsParameter {
|
---|
64 | get { return (IFixedValueParameter<BoolValue>)Parameters[UpdateVariableWeightsParameterName]; }
|
---|
65 | }
|
---|
66 |
|
---|
67 | public IResultParameter<IntValue> FunctionEvaluationsResultParameter {
|
---|
68 | get { return (IResultParameter<IntValue>)Parameters[FunctionEvaluationsResultParameterName]; }
|
---|
69 | }
|
---|
70 | public IResultParameter<IntValue> GradientEvaluationsResultParameter {
|
---|
71 | get { return (IResultParameter<IntValue>)Parameters[GradientEvaluationsResultParameterName]; }
|
---|
72 | }
|
---|
73 | public IFixedValueParameter<BoolValue> CountEvaluationsParameter {
|
---|
74 | get { return (IFixedValueParameter<BoolValue>)Parameters[CountEvaluationsParameterName]; }
|
---|
75 | }
|
---|
76 | public IConstrainedValueParameter<StringValue> SolverParameter {
|
---|
77 | get { return (IConstrainedValueParameter<StringValue>)Parameters["Solver"]; }
|
---|
78 | }
|
---|
79 |
|
---|
80 |
|
---|
81 | public IntValue ConstantOptimizationIterations {
|
---|
82 | get { return ConstantOptimizationIterationsParameter.Value; }
|
---|
83 | }
|
---|
84 | public DoubleValue ConstantOptimizationImprovement {
|
---|
85 | get { return ConstantOptimizationImprovementParameter.Value; }
|
---|
86 | }
|
---|
87 | public PercentValue ConstantOptimizationProbability {
|
---|
88 | get { return ConstantOptimizationProbabilityParameter.Value; }
|
---|
89 | }
|
---|
90 | public PercentValue ConstantOptimizationRowsPercentage {
|
---|
91 | get { return ConstantOptimizationRowsPercentageParameter.Value; }
|
---|
92 | }
|
---|
93 | public bool UpdateConstantsInTree {
|
---|
94 | get { return UpdateConstantsInTreeParameter.Value.Value; }
|
---|
95 | set { UpdateConstantsInTreeParameter.Value.Value = value; }
|
---|
96 | }
|
---|
97 |
|
---|
98 | public bool UpdateVariableWeights {
|
---|
99 | get { return UpdateVariableWeightsParameter.Value.Value; }
|
---|
100 | set { UpdateVariableWeightsParameter.Value.Value = value; }
|
---|
101 | }
|
---|
102 |
|
---|
103 | public bool CountEvaluations {
|
---|
104 | get { return CountEvaluationsParameter.Value.Value; }
|
---|
105 | set { CountEvaluationsParameter.Value.Value = value; }
|
---|
106 | }
|
---|
107 |
|
---|
108 | public string Solver {
|
---|
109 | get { return SolverParameter.Value.Value; }
|
---|
110 | }
|
---|
111 | public override bool Maximization {
|
---|
112 | get { return false; }
|
---|
113 | }
|
---|
114 |
|
---|
115 | [StorableConstructor]
|
---|
116 | protected ConstrainedConstantOptimizationEvaluator(StorableConstructorFlag _) : base(_) { }
|
---|
117 | protected ConstrainedConstantOptimizationEvaluator(ConstrainedConstantOptimizationEvaluator original, Cloner cloner)
|
---|
118 | : base(original, cloner) {
|
---|
119 | }
|
---|
120 | public ConstrainedConstantOptimizationEvaluator()
|
---|
121 | : base() {
|
---|
122 | Parameters.Add(new FixedValueParameter<IntValue>(ConstantOptimizationIterationsParameterName, "Determines how many iterations should be calculated while optimizing the constant of a symbolic expression tree (0 indicates other or default stopping criterion).", new IntValue(10)));
|
---|
123 | Parameters.Add(new FixedValueParameter<DoubleValue>(ConstantOptimizationImprovementParameterName, "Determines the relative improvement which must be achieved in the constant optimization to continue with it (0 indicates other or default stopping criterion).", new DoubleValue(0)) { Hidden = true });
|
---|
124 | Parameters.Add(new FixedValueParameter<PercentValue>(ConstantOptimizationProbabilityParameterName, "Determines the probability that the constants are optimized", new PercentValue(1)));
|
---|
125 | Parameters.Add(new FixedValueParameter<PercentValue>(ConstantOptimizationRowsPercentageParameterName, "Determines the percentage of the rows which should be used for constant optimization", new PercentValue(1)));
|
---|
126 | Parameters.Add(new FixedValueParameter<BoolValue>(UpdateConstantsInTreeParameterName, "Determines if the constants in the tree should be overwritten by the optimized constants.", new BoolValue(true)) { Hidden = true });
|
---|
127 | Parameters.Add(new FixedValueParameter<BoolValue>(UpdateVariableWeightsParameterName, "Determines if the variable weights in the tree should be optimized.", new BoolValue(true)) { Hidden = true });
|
---|
128 |
|
---|
129 | Parameters.Add(new FixedValueParameter<BoolValue>(CountEvaluationsParameterName, "Determines if function and gradient evaluation should be counted.", new BoolValue(false)));
|
---|
130 | var validSolvers = new ItemSet<StringValue>(new[] { "non-smooth (minns)", "sequential linear programming (minnlc)" }.Select(s => new StringValue(s).AsReadOnly()));
|
---|
131 | Parameters.Add(new ConstrainedValueParameter<StringValue>("Solver", "The solver algorithm", validSolvers, validSolvers.First()));
|
---|
132 | Parameters.Add(new ResultParameter<IntValue>(FunctionEvaluationsResultParameterName, "The number of function evaluations performed by the constants optimization evaluator", "Results", new IntValue()));
|
---|
133 | Parameters.Add(new ResultParameter<IntValue>(GradientEvaluationsResultParameterName, "The number of gradient evaluations performed by the constants optimization evaluator", "Results", new IntValue()));
|
---|
134 | }
|
---|
135 |
|
---|
136 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
137 | return new ConstrainedConstantOptimizationEvaluator(this, cloner);
|
---|
138 | }
|
---|
139 |
|
---|
140 | [StorableHook(HookType.AfterDeserialization)]
|
---|
141 | private void AfterDeserialization() { }
|
---|
142 |
|
---|
143 | private static readonly object locker = new object();
|
---|
144 |
|
---|
145 | public override IOperation InstrumentedApply() {
|
---|
146 | var solution = SymbolicExpressionTreeParameter.ActualValue;
|
---|
147 | double quality;
|
---|
148 | if (RandomParameter.ActualValue.NextDouble() < ConstantOptimizationProbability.Value) {
|
---|
149 | IEnumerable<int> constantOptimizationRows = GenerateRowsToEvaluate(ConstantOptimizationRowsPercentage.Value);
|
---|
150 | var counter = new EvaluationsCounter();
|
---|
151 | quality = OptimizeConstants(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, solution, ProblemDataParameter.ActualValue,
|
---|
152 | constantOptimizationRows, ApplyLinearScalingParameter.ActualValue.Value, Solver, ConstantOptimizationIterations.Value, updateVariableWeights: UpdateVariableWeights, lowerEstimationLimit: EstimationLimitsParameter.ActualValue.Lower, upperEstimationLimit: EstimationLimitsParameter.ActualValue.Upper, updateConstantsInTree: UpdateConstantsInTree, counter: counter);
|
---|
153 |
|
---|
154 | if (ConstantOptimizationRowsPercentage.Value != RelativeNumberOfEvaluatedSamplesParameter.ActualValue.Value) {
|
---|
155 | throw new NotSupportedException();
|
---|
156 | }
|
---|
157 |
|
---|
158 | if (CountEvaluations) {
|
---|
159 | lock (locker) {
|
---|
160 | FunctionEvaluationsResultParameter.ActualValue.Value += counter.FunctionEvaluations;
|
---|
161 | GradientEvaluationsResultParameter.ActualValue.Value += counter.GradientEvaluations;
|
---|
162 | }
|
---|
163 | }
|
---|
164 |
|
---|
165 | } else {
|
---|
166 | throw new NotSupportedException();
|
---|
167 | }
|
---|
168 | QualityParameter.ActualValue = new DoubleValue(quality);
|
---|
169 |
|
---|
170 | return base.InstrumentedApply();
|
---|
171 | }
|
---|
172 |
|
---|
173 | public override double Evaluate(IExecutionContext context, ISymbolicExpressionTree tree, IRegressionProblemData problemData, IEnumerable<int> rows) {
|
---|
174 | SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = context;
|
---|
175 | EstimationLimitsParameter.ExecutionContext = context;
|
---|
176 | ApplyLinearScalingParameter.ExecutionContext = context;
|
---|
177 | FunctionEvaluationsResultParameter.ExecutionContext = context;
|
---|
178 | GradientEvaluationsResultParameter.ExecutionContext = context;
|
---|
179 |
|
---|
180 | // MSE evaluator is used on purpose instead of the const-opt evaluator,
|
---|
181 | // because Evaluate() is used to get the quality of evolved models on
|
---|
182 | // different partitions of the dataset (e.g., best validation model)
|
---|
183 | double mse = SymbolicRegressionSingleObjectiveMeanSquaredErrorEvaluator.Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, tree, double.MinValue, double.MaxValue, problemData, rows, applyLinearScaling: false);
|
---|
184 |
|
---|
185 | SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = null;
|
---|
186 | EstimationLimitsParameter.ExecutionContext = null;
|
---|
187 | ApplyLinearScalingParameter.ExecutionContext = null;
|
---|
188 | FunctionEvaluationsResultParameter.ExecutionContext = null;
|
---|
189 | GradientEvaluationsResultParameter.ExecutionContext = null;
|
---|
190 |
|
---|
191 | return mse;
|
---|
192 | }
|
---|
193 |
|
---|
194 | public class EvaluationsCounter {
|
---|
195 | public int FunctionEvaluations = 0;
|
---|
196 | public int GradientEvaluations = 0;
|
---|
197 | }
|
---|
198 |
|
---|
199 | private static void GetParameterNodes(ISymbolicExpressionTree tree, out List<ISymbolicExpressionTreeNode> thetaNodes, out List<double> thetaValues) {
|
---|
200 | thetaNodes = new List<ISymbolicExpressionTreeNode>();
|
---|
201 | thetaValues = new List<double>();
|
---|
202 |
|
---|
203 | var nodes = tree.IterateNodesPrefix().ToArray();
|
---|
204 | for (int i = 0; i < nodes.Length; ++i) {
|
---|
205 | var node = nodes[i];
|
---|
206 | if (node is VariableTreeNode variableTreeNode) {
|
---|
207 | thetaValues.Add(variableTreeNode.Weight);
|
---|
208 | thetaNodes.Add(node);
|
---|
209 | } else if (node is ConstantTreeNode constantTreeNode) {
|
---|
210 | thetaNodes.Add(node);
|
---|
211 | thetaValues.Add(constantTreeNode.Value);
|
---|
212 | }
|
---|
213 | }
|
---|
214 | }
|
---|
215 |
|
---|
216 | public static double OptimizeConstants(ISymbolicDataAnalysisExpressionTreeInterpreter interpreter,
|
---|
217 | ISymbolicExpressionTree tree, IRegressionProblemData problemData, IEnumerable<int> rows, bool applyLinearScaling,
|
---|
218 | string solver,
|
---|
219 | int maxIterations, bool updateVariableWeights = true,
|
---|
220 | double lowerEstimationLimit = double.MinValue, double upperEstimationLimit = double.MaxValue,
|
---|
221 | bool updateConstantsInTree = true, Action<double[], double, object> iterationCallback = null, EvaluationsCounter counter = null) {
|
---|
222 |
|
---|
223 | if (!updateVariableWeights) throw new NotSupportedException("not updating variable weights is not supported");
|
---|
224 | if (!updateConstantsInTree) throw new NotSupportedException("not updating tree parameters is not supported");
|
---|
225 | if (!applyLinearScaling) throw new NotSupportedException("application without linear scaling is not supported");
|
---|
226 |
|
---|
227 | // we always update constants, so we don't need to calculate initial quality
|
---|
228 | // double originalQuality = SymbolicRegressionSingleObjectiveMeanSquaredErrorEvaluator.Calculate(interpreter, tree, lowerEstimationLimit, upperEstimationLimit, problemData, rows, applyLinearScaling: false);
|
---|
229 |
|
---|
230 | if (counter == null) counter = new EvaluationsCounter();
|
---|
231 | var rowEvaluationsCounter = new EvaluationsCounter();
|
---|
232 |
|
---|
233 | var intervalConstraints = problemData.IntervalConstraints;
|
---|
234 | var dataIntervals = problemData.VariableRanges.GetIntervals();
|
---|
235 |
|
---|
236 | // buffers
|
---|
237 | var target = problemData.TargetVariableTrainingValues.ToArray();
|
---|
238 | var targetStDev = target.StandardDeviationPop();
|
---|
239 | var targetVariance = targetStDev * targetStDev;
|
---|
240 | var targetMean = target.Average();
|
---|
241 | var pred = interpreter.GetSymbolicExpressionTreeValues(tree, problemData.Dataset, problemData.TrainingIndices).ToArray();
|
---|
242 | if (pred.Any(pi => double.IsInfinity(pi) || double.IsNaN(pi))) return targetVariance;
|
---|
243 |
|
---|
244 | var predStDev = pred.StandardDeviationPop();
|
---|
245 | if (predStDev == 0) return targetVariance; // constant expression
|
---|
246 | var predMean = pred.Average();
|
---|
247 |
|
---|
248 | var scalingFactor = targetStDev / predStDev;
|
---|
249 | var offset = targetMean - predMean * scalingFactor;
|
---|
250 |
|
---|
251 | ISymbolicExpressionTree scaledTree = null;
|
---|
252 | if (applyLinearScaling) scaledTree = CopyAndScaleTree(tree, scalingFactor, offset);
|
---|
253 |
|
---|
254 | // convert constants to variables named theta...
|
---|
255 | var treeForDerivation = ReplaceConstWithVar(scaledTree, out List<string> thetaNames, out List<double> thetaValues); // copies the tree
|
---|
256 |
|
---|
257 | // create trees for relevant derivatives
|
---|
258 | Dictionary<string, ISymbolicExpressionTree> derivatives = new Dictionary<string, ISymbolicExpressionTree>();
|
---|
259 | var allThetaNodes = thetaNames.Select(_ => new List<ConstantTreeNode>()).ToArray();
|
---|
260 | var constraintTrees = new List<ISymbolicExpressionTree>();
|
---|
261 | foreach (var constraint in intervalConstraints.Constraints) {
|
---|
262 | if (constraint.IsDerivation) {
|
---|
263 | if (!problemData.AllowedInputVariables.Contains(constraint.Variable))
|
---|
264 | throw new ArgumentException($"Invalid constraint: the variable {constraint.Variable} does not exist in the dataset.");
|
---|
265 | var df = DerivativeCalculator.Derive(treeForDerivation, constraint.Variable);
|
---|
266 |
|
---|
267 | // alglib requires constraint expressions of the form c(x) <= 0
|
---|
268 | // -> we make two expressions, one for the lower bound and one for the upper bound
|
---|
269 |
|
---|
270 | if (constraint.Interval.UpperBound < double.PositiveInfinity) {
|
---|
271 | var df_smaller_upper = Subtract((ISymbolicExpressionTree)df.Clone(), CreateConstant(constraint.Interval.UpperBound));
|
---|
272 | // convert variables named theta back to constants
|
---|
273 | var df_prepared = ReplaceVarWithConst(df_smaller_upper, thetaNames, thetaValues, allThetaNodes);
|
---|
274 | constraintTrees.Add(df_prepared);
|
---|
275 | }
|
---|
276 | if (constraint.Interval.LowerBound > double.NegativeInfinity) {
|
---|
277 | var df_larger_lower = Subtract(CreateConstant(constraint.Interval.LowerBound), (ISymbolicExpressionTree)df.Clone());
|
---|
278 | // convert variables named theta back to constants
|
---|
279 | var df_prepared = ReplaceVarWithConst(df_larger_lower, thetaNames, thetaValues, allThetaNodes);
|
---|
280 | constraintTrees.Add(df_prepared);
|
---|
281 | }
|
---|
282 | } else {
|
---|
283 | if (constraint.Interval.UpperBound < double.PositiveInfinity) {
|
---|
284 | var f_smaller_upper = Subtract((ISymbolicExpressionTree)treeForDerivation.Clone(), CreateConstant(constraint.Interval.UpperBound));
|
---|
285 | // convert variables named theta back to constants
|
---|
286 | var df_prepared = ReplaceVarWithConst(f_smaller_upper, thetaNames, thetaValues, allThetaNodes);
|
---|
287 | constraintTrees.Add(df_prepared);
|
---|
288 | }
|
---|
289 | if (constraint.Interval.LowerBound > double.NegativeInfinity) {
|
---|
290 | var f_larger_lower = Subtract(CreateConstant(constraint.Interval.LowerBound), (ISymbolicExpressionTree)treeForDerivation.Clone());
|
---|
291 | // convert variables named theta back to constants
|
---|
292 | var df_prepared = ReplaceVarWithConst(f_larger_lower, thetaNames, thetaValues, allThetaNodes);
|
---|
293 | constraintTrees.Add(df_prepared);
|
---|
294 | }
|
---|
295 | }
|
---|
296 | }
|
---|
297 |
|
---|
298 | var preparedTree = ReplaceVarWithConst(treeForDerivation, thetaNames, thetaValues, allThetaNodes);
|
---|
299 |
|
---|
300 |
|
---|
301 | // local function
|
---|
302 | void UpdateThetaValues(double[] theta) {
|
---|
303 | for (int i = 0; i < theta.Length; ++i) {
|
---|
304 | foreach (var constNode in allThetaNodes[i]) constNode.Value = theta[i];
|
---|
305 | }
|
---|
306 | }
|
---|
307 |
|
---|
308 | var fi_eval = new double[target.Length];
|
---|
309 | var jac_eval = new double[target.Length, thetaValues.Count];
|
---|
310 |
|
---|
311 | // define the callback used by the alglib optimizer
|
---|
312 | // the x argument for this callback represents our theta
|
---|
313 | // local function
|
---|
314 | void calculate_jacobian(double[] x, double[] fi, double[,] jac, object obj) {
|
---|
315 | UpdateThetaValues(x);
|
---|
316 |
|
---|
317 | var autoDiffEval = new VectorAutoDiffEvaluator();
|
---|
318 | autoDiffEval.Evaluate(preparedTree, problemData.Dataset, problemData.TrainingIndices.ToArray(),
|
---|
319 | GetParameterNodes(preparedTree, allThetaNodes), fi_eval, jac_eval);
|
---|
320 |
|
---|
321 | // calc sum of squared errors and gradient
|
---|
322 | var sse = 0.0;
|
---|
323 | var g = new double[x.Length];
|
---|
324 | for (int i = 0; i < target.Length; i++) {
|
---|
325 | var res = target[i] - fi_eval[i];
|
---|
326 | sse += 0.5 * res * res;
|
---|
327 | for (int j = 0; j < g.Length; j++) {
|
---|
328 | g[j] -= res * jac_eval[i, j];
|
---|
329 | }
|
---|
330 | }
|
---|
331 |
|
---|
332 | fi[0] = sse / target.Length;
|
---|
333 | for (int j = 0; j < x.Length; j++) { jac[0, j] = g[j] / target.Length; }
|
---|
334 |
|
---|
335 | var intervalEvaluator = new IntervalEvaluator();
|
---|
336 | for (int i = 0; i < constraintTrees.Count; i++) {
|
---|
337 | var interval = intervalEvaluator.Evaluate(constraintTrees[i], dataIntervals, GetParameterNodes(constraintTrees[i], allThetaNodes),
|
---|
338 | out double[] lowerGradient, out double[] upperGradient);
|
---|
339 |
|
---|
340 | // we transformed this to a constraint c(x) <= 0, so only the upper bound is relevant for us
|
---|
341 | fi[i + 1] = interval.UpperBound;
|
---|
342 | for (int j = 0; j < x.Length; j++) {
|
---|
343 | jac[i + 1, j] = upperGradient[j];
|
---|
344 | }
|
---|
345 | }
|
---|
346 | }
|
---|
347 |
|
---|
348 | if (solver.Contains("minns")) {
|
---|
349 | alglib.minnsstate state;
|
---|
350 | alglib.minnsreport rep;
|
---|
351 | try {
|
---|
352 | alglib.minnscreate(thetaValues.Count, thetaValues.ToArray(), out state);
|
---|
353 | alglib.minnssetbc(state, thetaValues.Select(_ => -10000.0).ToArray(), thetaValues.Select(_ => +10000.0).ToArray());
|
---|
354 | alglib.minnssetcond(state, 0, maxIterations);
|
---|
355 | var s = Enumerable.Repeat(1d, thetaValues.Count).ToArray(); // scale is set to unit scale
|
---|
356 | alglib.minnssetscale(state, s);
|
---|
357 |
|
---|
358 | // set non-linear constraints: 0 equality constraints, constraintTrees inequality constraints
|
---|
359 | alglib.minnssetnlc(state, 0, constraintTrees.Count);
|
---|
360 |
|
---|
361 | alglib.minnsoptimize(state, calculate_jacobian, null, null);
|
---|
362 | alglib.minnsresults(state, out double[] xOpt, out rep);
|
---|
363 |
|
---|
364 |
|
---|
365 | // counter.FunctionEvaluations += rep.nfev; TODO
|
---|
366 | counter.GradientEvaluations += rep.nfev;
|
---|
367 |
|
---|
368 | if (rep.terminationtype > 0) {
|
---|
369 | // update parameters in tree
|
---|
370 | var pIdx = 0;
|
---|
371 | // here we lose the two last parameters (for linear scaling)
|
---|
372 | foreach (var node in tree.IterateNodesPostfix()) {
|
---|
373 | if (node is ConstantTreeNode constTreeNode) {
|
---|
374 | constTreeNode.Value = xOpt[pIdx++];
|
---|
375 | } else if (node is VariableTreeNode varTreeNode) {
|
---|
376 | varTreeNode.Weight = xOpt[pIdx++];
|
---|
377 | }
|
---|
378 | }
|
---|
379 | // note: we keep the optimized constants even when the tree is worse.
|
---|
380 | // assert that we lose the last two parameters
|
---|
381 | if (pIdx != xOpt.Length - 2) throw new InvalidProgramException();
|
---|
382 | }
|
---|
383 | if (Math.Abs(rep.nlcerr) > 0.01) return targetVariance; // constraints are violated
|
---|
384 | } catch (ArithmeticException) {
|
---|
385 | return targetVariance;
|
---|
386 | } catch (alglib.alglibexception) {
|
---|
387 | // eval MSE of original tree
|
---|
388 | return targetVariance;
|
---|
389 | }
|
---|
390 | } else if (solver.Contains("minnlc")) {
|
---|
391 | alglib.minnlcstate state;
|
---|
392 | alglib.minnlcreport rep;
|
---|
393 | alglib.optguardreport optGuardRep;
|
---|
394 | try {
|
---|
395 | alglib.minnlccreate(thetaValues.Count, thetaValues.ToArray(), out state);
|
---|
396 | alglib.minnlcsetalgoslp(state); // SLP is more robust but slower
|
---|
397 | alglib.minnlcsetbc(state, thetaValues.Select(_ => -10000.0).ToArray(), thetaValues.Select(_ => +10000.0).ToArray());
|
---|
398 | alglib.minnlcsetcond(state, 0, maxIterations);
|
---|
399 | var s = Enumerable.Repeat(1d, thetaValues.Count).ToArray(); // scale is set to unit scale
|
---|
400 | alglib.minnlcsetscale(state, s);
|
---|
401 |
|
---|
402 | // set non-linear constraints: 0 equality constraints, constraintTrees inequality constraints
|
---|
403 | alglib.minnlcsetnlc(state, 0, constraintTrees.Count);
|
---|
404 | alglib.minnlcoptguardsmoothness(state, 1);
|
---|
405 |
|
---|
406 | alglib.minnlcoptimize(state, calculate_jacobian, null, null);
|
---|
407 | alglib.minnlcresults(state, out double[] xOpt, out rep);
|
---|
408 | alglib.minnlcoptguardresults(state, out optGuardRep);
|
---|
409 | if (optGuardRep.nonc0suspected) throw new InvalidProgramException("optGuardRep.nonc0suspected");
|
---|
410 | if (optGuardRep.nonc1suspected) {
|
---|
411 | alglib.minnlcoptguardnonc1test1results(state, out alglib.optguardnonc1test1report strrep, out alglib.optguardnonc1test1report lngrep);
|
---|
412 | throw new InvalidProgramException("optGuardRep.nonc1suspected");
|
---|
413 | }
|
---|
414 |
|
---|
415 | // counter.FunctionEvaluations += rep.nfev; TODO
|
---|
416 | counter.GradientEvaluations += rep.nfev;
|
---|
417 |
|
---|
418 | if (rep.terminationtype != -8) {
|
---|
419 | // update parameters in tree
|
---|
420 | var pIdx = 0;
|
---|
421 | foreach (var node in tree.IterateNodesPostfix()) {
|
---|
422 | if (node is ConstantTreeNode constTreeNode) {
|
---|
423 | constTreeNode.Value = xOpt[pIdx++];
|
---|
424 | } else if (node is VariableTreeNode varTreeNode) {
|
---|
425 | varTreeNode.Weight = xOpt[pIdx++];
|
---|
426 | }
|
---|
427 | }
|
---|
428 | // note: we keep the optimized constants even when the tree is worse.
|
---|
429 | // assert that we lose the last two parameters
|
---|
430 | if (pIdx != xOpt.Length - 2) throw new InvalidProgramException();
|
---|
431 |
|
---|
432 | }
|
---|
433 | if (Math.Abs(rep.nlcerr) > 0.01) return targetVariance; // constraints are violated
|
---|
434 |
|
---|
435 | } catch (ArithmeticException) {
|
---|
436 | return targetVariance;
|
---|
437 | } catch (alglib.alglibexception) {
|
---|
438 | return targetVariance;
|
---|
439 | }
|
---|
440 | } else {
|
---|
441 | throw new ArgumentException($"Unknown solver {solver}");
|
---|
442 | }
|
---|
443 |
|
---|
444 |
|
---|
445 | // evaluate tree with updated constants
|
---|
446 | var residualVariance = SymbolicRegressionSingleObjectiveMeanSquaredErrorEvaluator.Calculate(interpreter, tree, lowerEstimationLimit, upperEstimationLimit, problemData, rows, applyLinearScaling: true);
|
---|
447 | return Math.Min(residualVariance, targetVariance);
|
---|
448 | }
|
---|
449 |
|
---|
450 | private static ISymbolicExpressionTree CopyAndScaleTree(ISymbolicExpressionTree tree, double scalingFactor, double offset) {
|
---|
451 | var m = (ISymbolicExpressionTree)tree.Clone();
|
---|
452 |
|
---|
453 | var add = MakeNode<Addition>(MakeNode<Multiplication>(m.Root.GetSubtree(0).GetSubtree(0), CreateConstant(scalingFactor)), CreateConstant(offset));
|
---|
454 | m.Root.GetSubtree(0).RemoveSubtree(0);
|
---|
455 | m.Root.GetSubtree(0).AddSubtree(add);
|
---|
456 | return m;
|
---|
457 | }
|
---|
458 |
|
---|
459 | #region helper
|
---|
460 | private static ISymbolicExpressionTreeNode[] GetParameterNodes(ISymbolicExpressionTree tree, List<ConstantTreeNode>[] allNodes) {
|
---|
461 | // TODO better solution necessary
|
---|
462 | var treeConstNodes = tree.IterateNodesPostfix().OfType<ConstantTreeNode>().ToArray();
|
---|
463 | var paramNodes = new ISymbolicExpressionTreeNode[allNodes.Length];
|
---|
464 | for (int i = 0; i < paramNodes.Length; i++) {
|
---|
465 | paramNodes[i] = allNodes[i].SingleOrDefault(n => treeConstNodes.Contains(n));
|
---|
466 | }
|
---|
467 | return paramNodes;
|
---|
468 | }
|
---|
469 |
|
---|
470 | private static ISymbolicExpressionTree ReplaceVarWithConst(ISymbolicExpressionTree tree, List<string> thetaNames, List<double> thetaValues, List<ConstantTreeNode>[] thetaNodes) {
|
---|
471 | var copy = (ISymbolicExpressionTree)tree.Clone();
|
---|
472 | var nodes = copy.IterateNodesPostfix().ToList();
|
---|
473 | for (int i = 0; i < nodes.Count; i++) {
|
---|
474 | var n = nodes[i] as VariableTreeNode;
|
---|
475 | if (n != null) {
|
---|
476 | var thetaIdx = thetaNames.IndexOf(n.VariableName);
|
---|
477 | if (thetaIdx >= 0) {
|
---|
478 | var parent = n.Parent;
|
---|
479 | if (thetaNodes[thetaIdx].Any()) {
|
---|
480 | // HACK: REUSE CONSTANT TREE NODE IN SEVERAL TREES
|
---|
481 | // we use this trick to allow autodiff over thetas when thetas occurr multiple times in the tree (e.g. in derived trees)
|
---|
482 | var constNode = thetaNodes[thetaIdx].First();
|
---|
483 | var childIdx = parent.IndexOfSubtree(n);
|
---|
484 | parent.RemoveSubtree(childIdx);
|
---|
485 | parent.InsertSubtree(childIdx, constNode);
|
---|
486 | } else {
|
---|
487 | var constNode = (ConstantTreeNode)CreateConstant(thetaValues[thetaIdx]);
|
---|
488 | var childIdx = parent.IndexOfSubtree(n);
|
---|
489 | parent.RemoveSubtree(childIdx);
|
---|
490 | parent.InsertSubtree(childIdx, constNode);
|
---|
491 | thetaNodes[thetaIdx].Add(constNode);
|
---|
492 | }
|
---|
493 | }
|
---|
494 | }
|
---|
495 | }
|
---|
496 | return copy;
|
---|
497 | }
|
---|
498 |
|
---|
499 | private static ISymbolicExpressionTree ReplaceConstWithVar(ISymbolicExpressionTree tree, out List<string> thetaNames, out List<double> thetaValues) {
|
---|
500 | thetaNames = new List<string>();
|
---|
501 | thetaValues = new List<double>();
|
---|
502 | var copy = (ISymbolicExpressionTree)tree.Clone();
|
---|
503 | var nodes = copy.IterateNodesPostfix().ToList();
|
---|
504 |
|
---|
505 | int n = 1;
|
---|
506 | for (int i = 0; i < nodes.Count; ++i) {
|
---|
507 | var node = nodes[i];
|
---|
508 | if (node is ConstantTreeNode constantTreeNode) {
|
---|
509 | var thetaVar = (VariableTreeNode)new Problems.DataAnalysis.Symbolic.Variable().CreateTreeNode();
|
---|
510 | thetaVar.Weight = 1;
|
---|
511 | thetaVar.VariableName = $"θ{n++}";
|
---|
512 |
|
---|
513 | thetaNames.Add(thetaVar.VariableName);
|
---|
514 | thetaValues.Add(constantTreeNode.Value);
|
---|
515 |
|
---|
516 | var parent = constantTreeNode.Parent;
|
---|
517 | if (parent != null) {
|
---|
518 | var index = constantTreeNode.Parent.IndexOfSubtree(constantTreeNode);
|
---|
519 | parent.RemoveSubtree(index);
|
---|
520 | parent.InsertSubtree(index, thetaVar);
|
---|
521 | }
|
---|
522 | }
|
---|
523 | if (node is VariableTreeNode varTreeNode) {
|
---|
524 | var thetaVar = (VariableTreeNode)new Problems.DataAnalysis.Symbolic.Variable().CreateTreeNode();
|
---|
525 | thetaVar.Weight = 1;
|
---|
526 | thetaVar.VariableName = $"θ{n++}";
|
---|
527 |
|
---|
528 | thetaNames.Add(thetaVar.VariableName);
|
---|
529 | thetaValues.Add(varTreeNode.Weight);
|
---|
530 |
|
---|
531 | var parent = varTreeNode.Parent;
|
---|
532 | if (parent != null) {
|
---|
533 | var index = varTreeNode.Parent.IndexOfSubtree(varTreeNode);
|
---|
534 | parent.RemoveSubtree(index);
|
---|
535 | var prodNode = MakeNode<Multiplication>();
|
---|
536 | varTreeNode.Weight = 1.0;
|
---|
537 | prodNode.AddSubtree(varTreeNode);
|
---|
538 | prodNode.AddSubtree(thetaVar);
|
---|
539 | parent.InsertSubtree(index, prodNode);
|
---|
540 | }
|
---|
541 | }
|
---|
542 | }
|
---|
543 | return copy;
|
---|
544 | }
|
---|
545 |
|
---|
546 | private static ISymbolicExpressionTreeNode CreateConstant(double value) {
|
---|
547 | var constantNode = (ConstantTreeNode)new Constant().CreateTreeNode();
|
---|
548 | constantNode.Value = value;
|
---|
549 | return constantNode;
|
---|
550 | }
|
---|
551 |
|
---|
552 | private static ISymbolicExpressionTree Subtract(ISymbolicExpressionTree t, ISymbolicExpressionTreeNode b) {
|
---|
553 | var sub = MakeNode<Subtraction>(t.Root.GetSubtree(0).GetSubtree(0), b);
|
---|
554 | t.Root.GetSubtree(0).RemoveSubtree(0);
|
---|
555 | t.Root.GetSubtree(0).InsertSubtree(0, sub);
|
---|
556 | return t;
|
---|
557 | }
|
---|
558 | private static ISymbolicExpressionTree Subtract(ISymbolicExpressionTreeNode b, ISymbolicExpressionTree t) {
|
---|
559 | var sub = MakeNode<Subtraction>(b, t.Root.GetSubtree(0).GetSubtree(0));
|
---|
560 | t.Root.GetSubtree(0).RemoveSubtree(0);
|
---|
561 | t.Root.GetSubtree(0).InsertSubtree(0, sub);
|
---|
562 | return t;
|
---|
563 | }
|
---|
564 |
|
---|
565 | private static ISymbolicExpressionTreeNode MakeNode<T>(params ISymbolicExpressionTreeNode[] fs) where T : ISymbol, new() {
|
---|
566 | var node = new T().CreateTreeNode();
|
---|
567 | foreach (var f in fs) node.AddSubtree(f);
|
---|
568 | return node;
|
---|
569 | }
|
---|
570 | #endregion
|
---|
571 |
|
---|
572 | private static void UpdateConstants(ISymbolicExpressionTreeNode[] nodes, double[] constants) {
|
---|
573 | if (nodes.Length != constants.Length) throw new InvalidOperationException();
|
---|
574 | for (int i = 0; i < nodes.Length; i++) {
|
---|
575 | if (nodes[i] is VariableTreeNode varNode) varNode.Weight = constants[i];
|
---|
576 | else if (nodes[i] is ConstantTreeNode constNode) constNode.Value = constants[i];
|
---|
577 | }
|
---|
578 | }
|
---|
579 |
|
---|
580 | private static alglib.ndimensional_fvec CreateFunc(ISymbolicExpressionTree tree, VectorEvaluator eval, ISymbolicExpressionTreeNode[] parameterNodes, IDataset ds, string targetVar, int[] rows) {
|
---|
581 | var y = ds.GetDoubleValues(targetVar, rows).ToArray();
|
---|
582 | return (double[] c, double[] fi, object o) => {
|
---|
583 | UpdateConstants(parameterNodes, c);
|
---|
584 | var pred = eval.Evaluate(tree, ds, rows);
|
---|
585 | for (int i = 0; i < fi.Length; i++)
|
---|
586 | fi[i] = pred[i] - y[i];
|
---|
587 |
|
---|
588 | var counter = (EvaluationsCounter)o;
|
---|
589 | counter.FunctionEvaluations++;
|
---|
590 | };
|
---|
591 | }
|
---|
592 |
|
---|
593 | private static alglib.ndimensional_jac CreateJac(ISymbolicExpressionTree tree, VectorAutoDiffEvaluator eval, ISymbolicExpressionTreeNode[] parameterNodes, IDataset ds, string targetVar, int[] rows) {
|
---|
594 | var y = ds.GetDoubleValues(targetVar, rows).ToArray();
|
---|
595 | return (double[] c, double[] fi, double[,] jac, object o) => {
|
---|
596 | UpdateConstants(parameterNodes, c);
|
---|
597 | eval.Evaluate(tree, ds, rows, parameterNodes, fi, jac);
|
---|
598 |
|
---|
599 | for (int i = 0; i < fi.Length; i++)
|
---|
600 | fi[i] -= y[i];
|
---|
601 |
|
---|
602 | var counter = (EvaluationsCounter)o;
|
---|
603 | counter.GradientEvaluations++;
|
---|
604 | };
|
---|
605 | }
|
---|
606 | public static bool CanOptimizeConstants(ISymbolicExpressionTree tree) {
|
---|
607 | return TreeToAutoDiffTermConverter.IsCompatible(tree);
|
---|
608 | }
|
---|
609 | }
|
---|
610 | }
|
---|