[16697] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using System.Threading;
|
---|
| 26 | using HeuristicLab.Analysis;
|
---|
| 27 | using HeuristicLab.Common;
|
---|
| 28 | using HeuristicLab.Core;
|
---|
| 29 | using HeuristicLab.Data;
|
---|
| 30 | using HeuristicLab.Optimization;
|
---|
| 31 | using HeuristicLab.Parameters;
|
---|
| 32 | using HEAL.Attic;
|
---|
| 33 | using HeuristicLab.Problems.DataAnalysis;
|
---|
| 34 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
| 35 | using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression;
|
---|
| 36 | using HeuristicLab.Random;
|
---|
| 37 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 38 |
|
---|
| 39 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
| 40 | /// <summary>
|
---|
| 41 | /// Nonlinear regression data analysis algorithm.
|
---|
| 42 | /// </summary>
|
---|
| 43 | [Item("Nonlinear Regression with Constraints (NLR)", "Nonlinear regression (curve fitting) data analysis algorithm that supports interval constraints.")]
|
---|
| 44 | [Creatable(CreatableAttribute.Categories.DataAnalysisRegression, Priority = 120)]
|
---|
| 45 | [StorableType("B235DB6E-591F-4537-8D2F-C2D1232AAEFD")]
|
---|
| 46 | public sealed class NonlinearConstrainedRegression : FixedDataAnalysisAlgorithm<IRegressionProblem> {
|
---|
| 47 | private const string RegressionSolutionResultName = "Regression solution";
|
---|
| 48 | private const string ModelStructureParameterName = "Model structure";
|
---|
| 49 | private const string IterationsParameterName = "Iterations";
|
---|
| 50 | private const string RestartsParameterName = "Restarts";
|
---|
| 51 | private const string SetSeedRandomlyParameterName = "SetSeedRandomly";
|
---|
| 52 | private const string SeedParameterName = "Seed";
|
---|
| 53 | private const string InitParamsRandomlyParameterName = "InitializeParametersRandomly";
|
---|
| 54 | private const string ApplyLinearScalingParameterName = "Apply linear scaling";
|
---|
| 55 |
|
---|
| 56 | public IFixedValueParameter<StringValue> ModelStructureParameter {
|
---|
| 57 | get { return (IFixedValueParameter<StringValue>)Parameters[ModelStructureParameterName]; }
|
---|
| 58 | }
|
---|
| 59 | public IFixedValueParameter<IntValue> IterationsParameter {
|
---|
| 60 | get { return (IFixedValueParameter<IntValue>)Parameters[IterationsParameterName]; }
|
---|
| 61 | }
|
---|
| 62 |
|
---|
| 63 | public IFixedValueParameter<BoolValue> SetSeedRandomlyParameter {
|
---|
| 64 | get { return (IFixedValueParameter<BoolValue>)Parameters[SetSeedRandomlyParameterName]; }
|
---|
| 65 | }
|
---|
| 66 |
|
---|
| 67 | public IFixedValueParameter<IntValue> SeedParameter {
|
---|
| 68 | get { return (IFixedValueParameter<IntValue>)Parameters[SeedParameterName]; }
|
---|
| 69 | }
|
---|
| 70 |
|
---|
| 71 | public IFixedValueParameter<IntValue> RestartsParameter {
|
---|
| 72 | get { return (IFixedValueParameter<IntValue>)Parameters[RestartsParameterName]; }
|
---|
| 73 | }
|
---|
| 74 |
|
---|
| 75 | public IFixedValueParameter<BoolValue> InitParametersRandomlyParameter {
|
---|
| 76 | get { return (IFixedValueParameter<BoolValue>)Parameters[InitParamsRandomlyParameterName]; }
|
---|
| 77 | }
|
---|
| 78 |
|
---|
| 79 | public IFixedValueParameter<BoolValue> ApplyLinearScalingParameter {
|
---|
| 80 | get { return (IFixedValueParameter<BoolValue>)Parameters[ApplyLinearScalingParameterName]; }
|
---|
| 81 | }
|
---|
| 82 |
|
---|
| 83 | public string ModelStructure {
|
---|
| 84 | get { return ModelStructureParameter.Value.Value; }
|
---|
| 85 | set { ModelStructureParameter.Value.Value = value; }
|
---|
| 86 | }
|
---|
| 87 |
|
---|
| 88 | public int Iterations {
|
---|
| 89 | get { return IterationsParameter.Value.Value; }
|
---|
| 90 | set { IterationsParameter.Value.Value = value; }
|
---|
| 91 | }
|
---|
| 92 |
|
---|
| 93 | public int Restarts {
|
---|
| 94 | get { return RestartsParameter.Value.Value; }
|
---|
| 95 | set { RestartsParameter.Value.Value = value; }
|
---|
| 96 | }
|
---|
| 97 |
|
---|
| 98 | public int Seed {
|
---|
| 99 | get { return SeedParameter.Value.Value; }
|
---|
| 100 | set { SeedParameter.Value.Value = value; }
|
---|
| 101 | }
|
---|
| 102 |
|
---|
| 103 | public bool SetSeedRandomly {
|
---|
| 104 | get { return SetSeedRandomlyParameter.Value.Value; }
|
---|
| 105 | set { SetSeedRandomlyParameter.Value.Value = value; }
|
---|
| 106 | }
|
---|
| 107 |
|
---|
| 108 | public bool InitializeParametersRandomly {
|
---|
| 109 | get { return InitParametersRandomlyParameter.Value.Value; }
|
---|
| 110 | set { InitParametersRandomlyParameter.Value.Value = value; }
|
---|
| 111 | }
|
---|
| 112 |
|
---|
| 113 | public bool ApplyLinearScaling {
|
---|
| 114 | get { return ApplyLinearScalingParameter.Value.Value; }
|
---|
| 115 | set { ApplyLinearScalingParameter.Value.Value = value; }
|
---|
| 116 | }
|
---|
| 117 |
|
---|
| 118 | [StorableConstructor]
|
---|
| 119 | private NonlinearConstrainedRegression(StorableConstructorFlag _) : base(_) { }
|
---|
| 120 | private NonlinearConstrainedRegression(NonlinearConstrainedRegression original, Cloner cloner)
|
---|
| 121 | : base(original, cloner) {
|
---|
| 122 | }
|
---|
| 123 | public NonlinearConstrainedRegression()
|
---|
| 124 | : base() {
|
---|
| 125 | Problem = new RegressionProblem();
|
---|
| 126 | Parameters.Add(new FixedValueParameter<StringValue>(ModelStructureParameterName, "The function for which the parameters must be fit (only numeric constants are tuned).", new StringValue("1.0 * x*x + 0.0")));
|
---|
| 127 | Parameters.Add(new FixedValueParameter<IntValue>(IterationsParameterName, "The maximum number of iterations for constants optimization.", new IntValue(200)));
|
---|
| 128 | Parameters.Add(new FixedValueParameter<IntValue>(RestartsParameterName, "The number of independent random restarts (>0)", new IntValue(10)));
|
---|
| 129 | Parameters.Add(new FixedValueParameter<IntValue>(SeedParameterName, "The PRNG seed value.", new IntValue()));
|
---|
| 130 | Parameters.Add(new FixedValueParameter<BoolValue>(SetSeedRandomlyParameterName, "Switch to determine if the random number seed should be initialized randomly.", new BoolValue(true)));
|
---|
| 131 | Parameters.Add(new FixedValueParameter<BoolValue>(InitParamsRandomlyParameterName, "Switch to determine if the real-valued model parameters should be initialized randomly in each restart.", new BoolValue(false)));
|
---|
| 132 | Parameters.Add(new FixedValueParameter<BoolValue>(ApplyLinearScalingParameterName, "Switch to determine if linear scaling terms should be added to the model", new BoolValue(true)));
|
---|
| 133 |
|
---|
| 134 | SetParameterHiddenState();
|
---|
| 135 |
|
---|
| 136 | InitParametersRandomlyParameter.Value.ValueChanged += (sender, args) => {
|
---|
| 137 | SetParameterHiddenState();
|
---|
| 138 | };
|
---|
| 139 | }
|
---|
| 140 |
|
---|
| 141 | private void SetParameterHiddenState() {
|
---|
| 142 | var hide = !InitializeParametersRandomly;
|
---|
| 143 | RestartsParameter.Hidden = hide;
|
---|
| 144 | SeedParameter.Hidden = hide;
|
---|
| 145 | SetSeedRandomlyParameter.Hidden = hide;
|
---|
| 146 | }
|
---|
| 147 |
|
---|
| 148 | [StorableHook(HookType.AfterDeserialization)]
|
---|
| 149 | private void AfterDeserialization() {
|
---|
| 150 | SetParameterHiddenState();
|
---|
| 151 | InitParametersRandomlyParameter.Value.ValueChanged += (sender, args) => {
|
---|
| 152 | SetParameterHiddenState();
|
---|
| 153 | };
|
---|
| 154 | }
|
---|
| 155 |
|
---|
| 156 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 157 | return new NonlinearConstrainedRegression(this, cloner);
|
---|
| 158 | }
|
---|
| 159 |
|
---|
| 160 | #region nonlinear regression
|
---|
| 161 | protected override void Run(CancellationToken cancellationToken) {
|
---|
| 162 | IRegressionSolution bestSolution = null;
|
---|
| 163 | if (InitializeParametersRandomly) {
|
---|
| 164 | var qualityTable = new DataTable("RMSE table");
|
---|
| 165 | qualityTable.VisualProperties.YAxisLogScale = true;
|
---|
| 166 | var trainRMSERow = new DataRow("RMSE (train)");
|
---|
| 167 | trainRMSERow.VisualProperties.ChartType = DataRowVisualProperties.DataRowChartType.Points;
|
---|
| 168 | var testRMSERow = new DataRow("RMSE test");
|
---|
| 169 | testRMSERow.VisualProperties.ChartType = DataRowVisualProperties.DataRowChartType.Points;
|
---|
| 170 |
|
---|
| 171 | qualityTable.Rows.Add(trainRMSERow);
|
---|
| 172 | qualityTable.Rows.Add(testRMSERow);
|
---|
| 173 | Results.Add(new Result(qualityTable.Name, qualityTable.Name + " for all restarts", qualityTable));
|
---|
| 174 | if (SetSeedRandomly) Seed = RandomSeedGenerator.GetSeed();
|
---|
| 175 | var rand = new MersenneTwister((uint)Seed);
|
---|
| 176 | bestSolution = CreateRegressionSolution((RegressionProblemData)Problem.ProblemData, ModelStructure, Iterations, ApplyLinearScaling, rand);
|
---|
| 177 | trainRMSERow.Values.Add(bestSolution.TrainingRootMeanSquaredError);
|
---|
| 178 | testRMSERow.Values.Add(bestSolution.TestRootMeanSquaredError);
|
---|
| 179 | for (int r = 0; r < Restarts; r++) {
|
---|
| 180 | var solution = CreateRegressionSolution((RegressionProblemData)Problem.ProblemData, ModelStructure, Iterations, ApplyLinearScaling, rand);
|
---|
| 181 | trainRMSERow.Values.Add(solution.TrainingRootMeanSquaredError);
|
---|
| 182 | testRMSERow.Values.Add(solution.TestRootMeanSquaredError);
|
---|
| 183 | if (solution.TrainingRootMeanSquaredError < bestSolution.TrainingRootMeanSquaredError) {
|
---|
| 184 | bestSolution = solution;
|
---|
| 185 | }
|
---|
| 186 | }
|
---|
| 187 | } else {
|
---|
| 188 | bestSolution = CreateRegressionSolution((RegressionProblemData)Problem.ProblemData, ModelStructure, Iterations, ApplyLinearScaling);
|
---|
| 189 | }
|
---|
| 190 |
|
---|
| 191 | Results.Add(new Result(RegressionSolutionResultName, "The nonlinear regression solution.", bestSolution));
|
---|
| 192 | Results.Add(new Result("Root mean square error (train)", "The root of the mean of squared errors of the regression solution on the training set.", new DoubleValue(bestSolution.TrainingRootMeanSquaredError)));
|
---|
| 193 | Results.Add(new Result("Root mean square error (test)", "The root of the mean of squared errors of the regression solution on the test set.", new DoubleValue(bestSolution.TestRootMeanSquaredError)));
|
---|
| 194 |
|
---|
| 195 | }
|
---|
| 196 |
|
---|
| 197 | /// <summary>
|
---|
| 198 | /// Fits a model to the data by optimizing the numeric constants.
|
---|
| 199 | /// Model is specified as infix expression containing variable names and numbers.
|
---|
| 200 | /// The starting point for the numeric constants is initialized randomly if a random number generator is specified (~N(0,1)). Otherwise the user specified constants are
|
---|
| 201 | /// used as a starting point.
|
---|
| 202 | /// </summary>-
|
---|
| 203 | /// <param name="problemData">Training and test data</param>
|
---|
| 204 | /// <param name="modelStructure">The function as infix expression</param>
|
---|
| 205 | /// <param name="maxIterations">Number of constant optimization iterations (using Levenberg-Marquardt algorithm)</param>
|
---|
| 206 | /// <param name="random">Optional random number generator for random initialization of numeric constants.</param>
|
---|
| 207 | /// <returns></returns>
|
---|
| 208 | public static ISymbolicRegressionSolution CreateRegressionSolution(RegressionProblemData problemData, string modelStructure, int maxIterations, bool applyLinearScaling, IRandom rand = null) {
|
---|
| 209 | var parser = new InfixExpressionParser();
|
---|
| 210 | var tree = parser.Parse(modelStructure);
|
---|
| 211 | // parser handles double and string variables equally by creating a VariableTreeNode
|
---|
| 212 | // post-process to replace VariableTreeNodes by FactorVariableTreeNodes for all string variables
|
---|
| 213 | var factorSymbol = new FactorVariable();
|
---|
| 214 | factorSymbol.VariableNames =
|
---|
| 215 | problemData.AllowedInputVariables.Where(name => problemData.Dataset.VariableHasType<string>(name));
|
---|
| 216 | factorSymbol.AllVariableNames = factorSymbol.VariableNames;
|
---|
| 217 | factorSymbol.VariableValues =
|
---|
| 218 | factorSymbol.VariableNames.Select(name =>
|
---|
| 219 | new KeyValuePair<string, Dictionary<string, int>>(name,
|
---|
| 220 | problemData.Dataset.GetReadOnlyStringValues(name).Distinct()
|
---|
| 221 | .Select((n, i) => Tuple.Create(n, i))
|
---|
| 222 | .ToDictionary(tup => tup.Item1, tup => tup.Item2)));
|
---|
| 223 |
|
---|
| 224 | foreach (var parent in tree.IterateNodesPrefix().ToArray()) {
|
---|
| 225 | for (int i = 0; i < parent.SubtreeCount; i++) {
|
---|
| 226 | var varChild = parent.GetSubtree(i) as VariableTreeNode;
|
---|
| 227 | var factorVarChild = parent.GetSubtree(i) as FactorVariableTreeNode;
|
---|
| 228 | if (varChild != null && factorSymbol.VariableNames.Contains(varChild.VariableName)) {
|
---|
| 229 | parent.RemoveSubtree(i);
|
---|
| 230 | var factorTreeNode = (FactorVariableTreeNode)factorSymbol.CreateTreeNode();
|
---|
| 231 | factorTreeNode.VariableName = varChild.VariableName;
|
---|
| 232 | factorTreeNode.Weights =
|
---|
| 233 | factorTreeNode.Symbol.GetVariableValues(factorTreeNode.VariableName).Select(_ => 1.0).ToArray();
|
---|
| 234 | // weight = 1.0 for each value
|
---|
| 235 | parent.InsertSubtree(i, factorTreeNode);
|
---|
| 236 | } else if (factorVarChild != null && factorSymbol.VariableNames.Contains(factorVarChild.VariableName)) {
|
---|
| 237 | if (factorSymbol.GetVariableValues(factorVarChild.VariableName).Count() != factorVarChild.Weights.Length)
|
---|
| 238 | throw new ArgumentException(
|
---|
| 239 | string.Format("Factor variable {0} needs exactly {1} weights",
|
---|
| 240 | factorVarChild.VariableName,
|
---|
| 241 | factorSymbol.GetVariableValues(factorVarChild.VariableName).Count()));
|
---|
| 242 | parent.RemoveSubtree(i);
|
---|
| 243 | var factorTreeNode = (FactorVariableTreeNode)factorSymbol.CreateTreeNode();
|
---|
| 244 | factorTreeNode.VariableName = factorVarChild.VariableName;
|
---|
| 245 | factorTreeNode.Weights = factorVarChild.Weights;
|
---|
| 246 | parent.InsertSubtree(i, factorTreeNode);
|
---|
| 247 | }
|
---|
| 248 | }
|
---|
| 249 | }
|
---|
| 250 |
|
---|
| 251 | // var interpreter = new SymbolicDataAnalysisExpressionTreeLinearInterpreter();
|
---|
| 252 | //
|
---|
| 253 | // SymbolicRegressionConstantOptimizationEvaluator.OptimizeConstants(interpreter, tree, problemData, problemData.TrainingIndices,
|
---|
| 254 | // applyLinearScaling: applyLinearScaling, maxIterations: maxIterations,
|
---|
| 255 | // updateVariableWeights: false, updateConstantsInTree: true);
|
---|
| 256 |
|
---|
| 257 |
|
---|
| 258 | var intervals = problemData.IntervalConstraints;
|
---|
| 259 | var constraintsParser = new IntervalConstraintsParser();
|
---|
| 260 | var constraints = constraintsParser.Parse(intervals.Value);
|
---|
| 261 | var dataIntervals = problemData.VariableRanges.VariableIntervals;
|
---|
| 262 |
|
---|
| 263 | // convert constants to variables named theta...
|
---|
| 264 | var treeForDerivation = ReplaceConstWithVar(tree, out List<string> thetaNames, out List<double> thetaValues);
|
---|
| 265 |
|
---|
| 266 | // create trees for relevant derivatives
|
---|
| 267 | Dictionary<string, ISymbolicExpressionTree> derivatives = new Dictionary<string, ISymbolicExpressionTree>();
|
---|
| 268 | var allThetaNodes = thetaNames.Select(_ => new List<ConstantTreeNode>()).ToArray();
|
---|
| 269 | var constraintTrees = new List<ISymbolicExpressionTree>();
|
---|
| 270 | foreach (var constraint in constraints) {
|
---|
| 271 | if (constraint.IsDerivation) {
|
---|
| 272 | var df = DerivativeCalculator.Derive(treeForDerivation, constraint.Variable);
|
---|
| 273 |
|
---|
| 274 | // alglib requires constraint expressions of the form c(x) <= 0
|
---|
| 275 | // -> we make two expressions, one for the lower bound and one for the upper bound
|
---|
| 276 |
|
---|
| 277 | if (constraint.Interval.UpperBound < double.PositiveInfinity) {
|
---|
| 278 | var df_smaller_upper = Subtract((ISymbolicExpressionTree)df.Clone(), CreateConstant(constraint.Interval.UpperBound));
|
---|
| 279 | // convert variables named theta back to constants
|
---|
| 280 | var df_prepared = ReplaceVarWithConst(df_smaller_upper, thetaNames, thetaValues, allThetaNodes);
|
---|
| 281 | constraintTrees.Add(df_prepared);
|
---|
| 282 | }
|
---|
| 283 | if (constraint.Interval.LowerBound > double.NegativeInfinity) {
|
---|
| 284 | var df_larger_lower = Subtract(CreateConstant(constraint.Interval.LowerBound), (ISymbolicExpressionTree)df.Clone());
|
---|
| 285 | // convert variables named theta back to constants
|
---|
| 286 | var df_prepared = ReplaceVarWithConst(df_larger_lower, thetaNames, thetaValues, allThetaNodes);
|
---|
| 287 | constraintTrees.Add(df_prepared);
|
---|
| 288 | }
|
---|
| 289 | } else {
|
---|
| 290 | if (constraint.Interval.UpperBound < double.PositiveInfinity) {
|
---|
| 291 | var f_smaller_upper = Subtract((ISymbolicExpressionTree)treeForDerivation.Clone(), CreateConstant(constraint.Interval.UpperBound));
|
---|
| 292 | // convert variables named theta back to constants
|
---|
| 293 | var df_prepared = ReplaceVarWithConst(f_smaller_upper, thetaNames, thetaValues, allThetaNodes);
|
---|
| 294 | constraintTrees.Add(df_prepared);
|
---|
| 295 | }
|
---|
| 296 | if (constraint.Interval.LowerBound > double.NegativeInfinity) {
|
---|
| 297 | var f_larger_lower = Subtract(CreateConstant(constraint.Interval.LowerBound), (ISymbolicExpressionTree)treeForDerivation.Clone());
|
---|
| 298 | // convert variables named theta back to constants
|
---|
| 299 | var df_prepared = ReplaceVarWithConst(f_larger_lower, thetaNames, thetaValues, allThetaNodes);
|
---|
| 300 | constraintTrees.Add(df_prepared);
|
---|
| 301 | }
|
---|
| 302 | }
|
---|
| 303 | }
|
---|
| 304 |
|
---|
| 305 | var preparedTree = ReplaceVarWithConst(treeForDerivation, thetaNames, thetaValues, allThetaNodes);
|
---|
| 306 |
|
---|
| 307 | // initialize constants randomly
|
---|
| 308 | if (rand != null) {
|
---|
| 309 | for (int i = 0; i < allThetaNodes.Length; i++) {
|
---|
| 310 | double f = Math.Exp(NormalDistributedRandom.NextDouble(rand, 0, 1));
|
---|
| 311 | double scale = rand.NextDouble() < 0.5 ? -1 : 1;
|
---|
| 312 | thetaValues[i] = scale * thetaValues[i] * f;
|
---|
| 313 | foreach (var constNode in allThetaNodes[i]) constNode.Value = thetaValues[i];
|
---|
| 314 | }
|
---|
| 315 | }
|
---|
| 316 |
|
---|
| 317 | void UpdateThetaValues(double[] theta) {
|
---|
| 318 | for (int i = 0; i < theta.Length; ++i) {
|
---|
| 319 | foreach (var constNode in allThetaNodes[i]) constNode.Value = theta[i];
|
---|
| 320 | }
|
---|
| 321 | }
|
---|
| 322 |
|
---|
| 323 | // define the callback used by the alglib optimizer
|
---|
| 324 | // the x argument for this callback represents our theta
|
---|
| 325 | void calculate_jacobian(double[] x, double[] fi, double[,] jac, object obj) {
|
---|
| 326 | UpdateThetaValues(x);
|
---|
| 327 |
|
---|
| 328 | var autoDiffEval = new VectorAutoDiffEvaluator();
|
---|
| 329 | autoDiffEval.Evaluate(preparedTree, problemData.Dataset, problemData.TrainingIndices.ToArray(),
|
---|
| 330 | GetParameterNodes(preparedTree, allThetaNodes), out double[] fi_eval, out double[,] jac_eval);
|
---|
| 331 | var target = problemData.TargetVariableTrainingValues.ToArray();
|
---|
| 332 |
|
---|
| 333 | // calc sum of squared errors and gradient
|
---|
| 334 | var sse = 0.0;
|
---|
| 335 | var g = new double[x.Length];
|
---|
| 336 | for (int i = 0; i < target.Length; i++) {
|
---|
| 337 | var res = target[i] - fi_eval[i];
|
---|
| 338 | sse += res * res;
|
---|
| 339 | for (int j = 0; j < g.Length; j++) {
|
---|
| 340 | g[j] += -2.0 * res * jac_eval[i, j];
|
---|
| 341 | }
|
---|
| 342 | }
|
---|
| 343 |
|
---|
| 344 | fi[0] = sse;
|
---|
| 345 | for (int j = 0; j < x.Length; j++) { jac[0, j] = g[j]; }
|
---|
| 346 |
|
---|
| 347 | var intervalEvaluator = new IntervalEvaluator();
|
---|
| 348 | for (int i = 0; i < constraintTrees.Count; i++) {
|
---|
| 349 | var interval = intervalEvaluator.Evaluate(constraintTrees[i], dataIntervals, GetParameterNodes(constraintTrees[i], allThetaNodes),
|
---|
| 350 | out double[] lowerGradient, out double[] upperGradient);
|
---|
| 351 |
|
---|
| 352 | // we transformed this to a constraint c(x) <= 0, so only the upper bound is relevant for us
|
---|
| 353 | fi[i + 1] = interval.UpperBound;
|
---|
| 354 | for (int j = 0; j < x.Length; j++) {
|
---|
| 355 | jac[i + 1, j] = upperGradient[j];
|
---|
| 356 | }
|
---|
| 357 | }
|
---|
| 358 | }
|
---|
| 359 |
|
---|
| 360 | // prepare alglib
|
---|
| 361 | alglib.minnlcstate state;
|
---|
| 362 | alglib.minnlcreport rep;
|
---|
| 363 | var x0 = thetaValues.ToArray();
|
---|
| 364 |
|
---|
| 365 | alglib.minnlccreate(x0.Length, x0, out state);
|
---|
| 366 | double epsx = 1e-6;
|
---|
| 367 | int maxits = 0;
|
---|
| 368 | alglib.minnlcsetalgoslp(state);
|
---|
| 369 | alglib.minnlcsetcond(state, 0, maxits);
|
---|
| 370 | var s = Enumerable.Repeat(1d, x0.Length).ToArray(); // scale is set to unit scale
|
---|
| 371 | alglib.minnlcsetscale(state, s);
|
---|
| 372 |
|
---|
| 373 | // set boundary constraints
|
---|
| 374 | // var boundaryLower = Enumerable.Repeat(-10d, n).ToArray();
|
---|
| 375 | // var boundaryUpper = Enumerable.Repeat(10d, n).ToArray();
|
---|
| 376 | // alglib.minnlcsetbc(state, boundaryLower, boundaryUpper);
|
---|
| 377 | // set non-linear constraints: 0 equality constraints, 1 inequality constraint
|
---|
| 378 | alglib.minnlcsetnlc(state, 0, constraintTrees.Count);
|
---|
| 379 |
|
---|
| 380 | alglib.minnlcoptimize(state, calculate_jacobian, null, null);
|
---|
| 381 | alglib.minnlcresults(state, out double[] xOpt, out rep);
|
---|
| 382 |
|
---|
| 383 | var interpreter = new SymbolicDataAnalysisExpressionTreeLinearInterpreter();
|
---|
| 384 | UpdateThetaValues(xOpt);
|
---|
| 385 | var model = new SymbolicRegressionModel(problemData.TargetVariable, (ISymbolicExpressionTree)preparedTree.Clone(), (ISymbolicDataAnalysisExpressionTreeInterpreter)interpreter.Clone());
|
---|
| 386 | if (applyLinearScaling)
|
---|
| 387 | model.Scale(problemData);
|
---|
| 388 |
|
---|
| 389 | SymbolicRegressionSolution solution = new SymbolicRegressionSolution(model, (IRegressionProblemData)problemData.Clone());
|
---|
| 390 | solution.Model.Name = "Regression Model";
|
---|
| 391 | solution.Name = "Regression Solution";
|
---|
| 392 | return solution;
|
---|
| 393 | }
|
---|
| 394 |
|
---|
| 395 | private static ISymbolicExpressionTreeNode[] GetParameterNodes(ISymbolicExpressionTree tree, List<ConstantTreeNode>[] allNodes) {
|
---|
| 396 | // TODO better solution necessary
|
---|
| 397 | var treeConstNodes = tree.IterateNodesPostfix().OfType<ConstantTreeNode>().ToArray();
|
---|
| 398 | var paramNodes = new ISymbolicExpressionTreeNode[allNodes.Length];
|
---|
| 399 | for (int i = 0; i < paramNodes.Length; i++) {
|
---|
| 400 | paramNodes[i] = allNodes[i].SingleOrDefault(n => treeConstNodes.Contains(n));
|
---|
| 401 | }
|
---|
| 402 | return paramNodes;
|
---|
| 403 | }
|
---|
| 404 |
|
---|
| 405 | #endregion
|
---|
| 406 |
|
---|
| 407 | #region helper
|
---|
| 408 | private static ISymbolicExpressionTree ReplaceVarWithConst(ISymbolicExpressionTree tree, List<string> thetaNames, List<double> thetaValues, List<ConstantTreeNode>[] thetaNodes) {
|
---|
| 409 | var copy = (ISymbolicExpressionTree)tree.Clone();
|
---|
| 410 | var nodes = copy.IterateNodesPostfix().ToList();
|
---|
| 411 | for (int i = 0; i < nodes.Count; i++) {
|
---|
| 412 | var n = nodes[i] as VariableTreeNode;
|
---|
| 413 | if (n != null) {
|
---|
| 414 | var thetaIdx = thetaNames.IndexOf(n.VariableName);
|
---|
| 415 | if (thetaIdx >= 0) {
|
---|
| 416 | var parent = n.Parent;
|
---|
| 417 | if(thetaNodes[thetaIdx].Any()) {
|
---|
| 418 | // HACKY: REUSE CONSTANT TREE NODE IN SEVERAL TREES
|
---|
| 419 | // we use this trick to allow autodiff over thetas when thetas occurr multiple times in the tree (e.g. in derived trees)
|
---|
| 420 | var constNode = thetaNodes[thetaIdx].First();
|
---|
| 421 | var childIdx = parent.IndexOfSubtree(n);
|
---|
| 422 | parent.RemoveSubtree(childIdx);
|
---|
| 423 | parent.InsertSubtree(childIdx, constNode);
|
---|
| 424 | } else {
|
---|
| 425 | var constNode = (ConstantTreeNode)CreateConstant(thetaValues[thetaIdx]);
|
---|
| 426 | var childIdx = parent.IndexOfSubtree(n);
|
---|
| 427 | parent.RemoveSubtree(childIdx);
|
---|
| 428 | parent.InsertSubtree(childIdx, constNode);
|
---|
| 429 | thetaNodes[thetaIdx].Add(constNode);
|
---|
| 430 | }
|
---|
| 431 | }
|
---|
| 432 | }
|
---|
| 433 | }
|
---|
| 434 | return copy;
|
---|
| 435 | }
|
---|
| 436 |
|
---|
| 437 | private static ISymbolicExpressionTree ReplaceConstWithVar(ISymbolicExpressionTree tree, out List<string> thetaNames, out List<double> thetaValues) {
|
---|
| 438 | thetaNames = new List<string>();
|
---|
| 439 | thetaValues = new List<double>();
|
---|
| 440 | var copy = (ISymbolicExpressionTree)tree.Clone();
|
---|
| 441 | var nodes = copy.IterateNodesPostfix().ToList();
|
---|
| 442 |
|
---|
| 443 | int n = 1;
|
---|
| 444 | for (int i = 0; i < nodes.Count; ++i) {
|
---|
| 445 | var node = nodes[i];
|
---|
| 446 | /*if (node is VariableTreeNode variableTreeNode) {
|
---|
| 447 | var thetaVar = (VariableTreeNode)new Problems.DataAnalysis.Symbolic.Variable().CreateTreeNode();
|
---|
| 448 | thetaVar.Weight = 1;
|
---|
| 449 | thetaVar.VariableName = $"θ{n++}";
|
---|
| 450 |
|
---|
| 451 | thetaNames.Add(thetaVar.VariableName);
|
---|
| 452 | thetaValues.Add(variableTreeNode.Weight);
|
---|
| 453 | variableTreeNode.Weight = 1; // set to unit weight
|
---|
| 454 |
|
---|
| 455 | var parent = variableTreeNode.Parent;
|
---|
| 456 | var prod = MakeNode<Multiplication>(thetaVar, variableTreeNode);
|
---|
| 457 | if (parent != null) {
|
---|
| 458 | var index = parent.IndexOfSubtree(variableTreeNode);
|
---|
| 459 | parent.RemoveSubtree(index);
|
---|
| 460 | parent.InsertSubtree(index, prod);
|
---|
| 461 | }
|
---|
| 462 | } else*/ if (node is ConstantTreeNode constantTreeNode) {
|
---|
| 463 | var thetaVar = (VariableTreeNode)new Problems.DataAnalysis.Symbolic.Variable().CreateTreeNode();
|
---|
| 464 | thetaVar.Weight = 1;
|
---|
| 465 | thetaVar.VariableName = $"θ{n++}";
|
---|
| 466 |
|
---|
| 467 | thetaNames.Add(thetaVar.VariableName);
|
---|
| 468 | thetaValues.Add(constantTreeNode.Value);
|
---|
| 469 |
|
---|
| 470 | var parent = constantTreeNode.Parent;
|
---|
| 471 | if (parent != null) {
|
---|
| 472 | var index = constantTreeNode.Parent.IndexOfSubtree(constantTreeNode);
|
---|
| 473 | parent.RemoveSubtree(index);
|
---|
| 474 | parent.InsertSubtree(index, thetaVar);
|
---|
| 475 | }
|
---|
| 476 | }
|
---|
| 477 | }
|
---|
| 478 | return copy;
|
---|
| 479 | }
|
---|
| 480 |
|
---|
| 481 | private static ISymbolicExpressionTreeNode CreateConstant(double value) {
|
---|
| 482 | var constantNode = (ConstantTreeNode)new Constant().CreateTreeNode();
|
---|
| 483 | constantNode.Value = value;
|
---|
| 484 | return constantNode;
|
---|
| 485 | }
|
---|
| 486 |
|
---|
| 487 | private static ISymbolicExpressionTree Subtract(ISymbolicExpressionTree t, ISymbolicExpressionTreeNode b) {
|
---|
| 488 | var sub = MakeNode<Subtraction>(t.Root.GetSubtree(0).GetSubtree(0), b);
|
---|
| 489 | t.Root.GetSubtree(0).RemoveSubtree(0);
|
---|
| 490 | t.Root.GetSubtree(0).InsertSubtree(0, sub);
|
---|
| 491 | return t;
|
---|
| 492 | }
|
---|
| 493 | private static ISymbolicExpressionTree Subtract(ISymbolicExpressionTreeNode b, ISymbolicExpressionTree t) {
|
---|
| 494 | var sub = MakeNode<Subtraction>(b, t.Root.GetSubtree(0).GetSubtree(0));
|
---|
| 495 | t.Root.GetSubtree(0).RemoveSubtree(0);
|
---|
| 496 | t.Root.GetSubtree(0).InsertSubtree(0, sub);
|
---|
| 497 | return t;
|
---|
| 498 | }
|
---|
| 499 |
|
---|
| 500 | private static ISymbolicExpressionTreeNode MakeNode<T>(params ISymbolicExpressionTreeNode[] fs) where T : ISymbol, new() {
|
---|
| 501 | var node = new T().CreateTreeNode();
|
---|
| 502 | foreach (var f in fs) node.AddSubtree(f);
|
---|
| 503 | return node;
|
---|
| 504 | }
|
---|
| 505 | #endregion
|
---|
| 506 | }
|
---|
| 507 | }
|
---|