[12946] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[17209] | 3 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[12946] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Linq;
|
---|
| 24 | using HeuristicLab.Common;
|
---|
| 25 | using HeuristicLab.Core;
|
---|
| 26 | using HeuristicLab.Data;
|
---|
| 27 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
[13160] | 28 | using HeuristicLab.Optimization;
|
---|
[12946] | 29 | using HeuristicLab.Parameters;
|
---|
[16565] | 30 | using HEAL.Attic;
|
---|
[12946] | 31 | using HeuristicLab.Problems.DataAnalysis;
|
---|
| 32 | using HeuristicLab.Problems.Instances;
|
---|
| 33 |
|
---|
| 34 |
|
---|
| 35 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
| 36 | [Item("Gaussian Process Covariance Optimization Problem", "")]
|
---|
| 37 | [Creatable(CreatableAttribute.Categories.GeneticProgrammingProblems, Priority = 300)]
|
---|
[16565] | 38 | [StorableType("A3EA7CE7-78FA-48FF-9DD5-FBE5AB770A99")]
|
---|
[13209] | 39 | public sealed class GaussianProcessCovarianceOptimizationProblem : SymbolicExpressionTreeProblem, IStatefulItem, IRegressionProblem, IProblemInstanceConsumer<IRegressionProblemData>, IProblemInstanceExporter<IRegressionProblemData> {
|
---|
[12946] | 40 | #region static variables and ctor
|
---|
| 41 | private static readonly CovarianceMaternIso maternIso1;
|
---|
| 42 | private static readonly CovarianceMaternIso maternIso3;
|
---|
| 43 | private static readonly CovarianceMaternIso maternIso5;
|
---|
| 44 | private static readonly CovariancePiecewisePolynomial piecewisePoly0;
|
---|
| 45 | private static readonly CovariancePiecewisePolynomial piecewisePoly1;
|
---|
| 46 | private static readonly CovariancePiecewisePolynomial piecewisePoly2;
|
---|
| 47 | private static readonly CovariancePiecewisePolynomial piecewisePoly3;
|
---|
| 48 | private static readonly CovariancePolynomial poly2;
|
---|
| 49 | private static readonly CovariancePolynomial poly3;
|
---|
| 50 | private static readonly CovarianceSpectralMixture spectralMixture1;
|
---|
| 51 | private static readonly CovarianceSpectralMixture spectralMixture3;
|
---|
| 52 | private static readonly CovarianceSpectralMixture spectralMixture5;
|
---|
| 53 | private static readonly CovarianceLinear linear;
|
---|
| 54 | private static readonly CovarianceLinearArd linearArd;
|
---|
| 55 | private static readonly CovarianceNeuralNetwork neuralNetwork;
|
---|
| 56 | private static readonly CovariancePeriodic periodic;
|
---|
| 57 | private static readonly CovarianceRationalQuadraticIso ratQuadraticIso;
|
---|
| 58 | private static readonly CovarianceRationalQuadraticArd ratQuadraticArd;
|
---|
| 59 | private static readonly CovarianceSquaredExponentialArd sqrExpArd;
|
---|
| 60 | private static readonly CovarianceSquaredExponentialIso sqrExpIso;
|
---|
| 61 |
|
---|
| 62 | static GaussianProcessCovarianceOptimizationProblem() {
|
---|
| 63 | // cumbersome initialization because of ConstrainedValueParameters
|
---|
| 64 | maternIso1 = new CovarianceMaternIso(); SetConstrainedValueParameter(maternIso1.DParameter, 1);
|
---|
| 65 | maternIso3 = new CovarianceMaternIso(); SetConstrainedValueParameter(maternIso3.DParameter, 3);
|
---|
| 66 | maternIso5 = new CovarianceMaternIso(); SetConstrainedValueParameter(maternIso5.DParameter, 5);
|
---|
| 67 |
|
---|
| 68 | piecewisePoly0 = new CovariancePiecewisePolynomial(); SetConstrainedValueParameter(piecewisePoly0.VParameter, 0);
|
---|
| 69 | piecewisePoly1 = new CovariancePiecewisePolynomial(); SetConstrainedValueParameter(piecewisePoly1.VParameter, 1);
|
---|
| 70 | piecewisePoly2 = new CovariancePiecewisePolynomial(); SetConstrainedValueParameter(piecewisePoly2.VParameter, 2);
|
---|
| 71 | piecewisePoly3 = new CovariancePiecewisePolynomial(); SetConstrainedValueParameter(piecewisePoly3.VParameter, 3);
|
---|
| 72 |
|
---|
| 73 | poly2 = new CovariancePolynomial(); poly2.DegreeParameter.Value.Value = 2;
|
---|
| 74 | poly3 = new CovariancePolynomial(); poly3.DegreeParameter.Value.Value = 3;
|
---|
| 75 |
|
---|
| 76 | spectralMixture1 = new CovarianceSpectralMixture(); spectralMixture1.QParameter.Value.Value = 1;
|
---|
| 77 | spectralMixture3 = new CovarianceSpectralMixture(); spectralMixture3.QParameter.Value.Value = 3;
|
---|
| 78 | spectralMixture5 = new CovarianceSpectralMixture(); spectralMixture5.QParameter.Value.Value = 5;
|
---|
| 79 |
|
---|
| 80 | linear = new CovarianceLinear();
|
---|
| 81 | linearArd = new CovarianceLinearArd();
|
---|
| 82 | neuralNetwork = new CovarianceNeuralNetwork();
|
---|
| 83 | periodic = new CovariancePeriodic();
|
---|
| 84 | ratQuadraticArd = new CovarianceRationalQuadraticArd();
|
---|
| 85 | ratQuadraticIso = new CovarianceRationalQuadraticIso();
|
---|
| 86 | sqrExpArd = new CovarianceSquaredExponentialArd();
|
---|
| 87 | sqrExpIso = new CovarianceSquaredExponentialIso();
|
---|
| 88 | }
|
---|
| 89 |
|
---|
| 90 | private static void SetConstrainedValueParameter(IConstrainedValueParameter<IntValue> param, int val) {
|
---|
| 91 | param.Value = param.ValidValues.Single(v => v.Value == val);
|
---|
| 92 | }
|
---|
| 93 |
|
---|
| 94 | #endregion
|
---|
| 95 |
|
---|
| 96 | #region parameter names
|
---|
| 97 |
|
---|
| 98 | private const string ProblemDataParameterName = "ProblemData";
|
---|
| 99 | private const string ConstantOptIterationsParameterName = "Constant optimization steps";
|
---|
| 100 | private const string RestartsParameterName = "Restarts";
|
---|
| 101 |
|
---|
| 102 | #endregion
|
---|
| 103 |
|
---|
| 104 | #region Parameter Properties
|
---|
| 105 | IParameter IDataAnalysisProblem.ProblemDataParameter { get { return ProblemDataParameter; } }
|
---|
| 106 |
|
---|
| 107 | public IValueParameter<IRegressionProblemData> ProblemDataParameter {
|
---|
| 108 | get { return (IValueParameter<IRegressionProblemData>)Parameters[ProblemDataParameterName]; }
|
---|
| 109 | }
|
---|
| 110 | public IFixedValueParameter<IntValue> ConstantOptIterationsParameter {
|
---|
| 111 | get { return (IFixedValueParameter<IntValue>)Parameters[ConstantOptIterationsParameterName]; }
|
---|
| 112 | }
|
---|
| 113 | public IFixedValueParameter<IntValue> RestartsParameter {
|
---|
| 114 | get { return (IFixedValueParameter<IntValue>)Parameters[RestartsParameterName]; }
|
---|
| 115 | }
|
---|
| 116 | #endregion
|
---|
| 117 |
|
---|
| 118 | #region Properties
|
---|
| 119 |
|
---|
| 120 | public IRegressionProblemData ProblemData {
|
---|
| 121 | get { return ProblemDataParameter.Value; }
|
---|
| 122 | set { ProblemDataParameter.Value = value; }
|
---|
| 123 | }
|
---|
| 124 | IDataAnalysisProblemData IDataAnalysisProblem.ProblemData { get { return ProblemData; } }
|
---|
| 125 |
|
---|
| 126 | public int ConstantOptIterations {
|
---|
| 127 | get { return ConstantOptIterationsParameter.Value.Value; }
|
---|
| 128 | set { ConstantOptIterationsParameter.Value.Value = value; }
|
---|
| 129 | }
|
---|
| 130 |
|
---|
| 131 | public int Restarts {
|
---|
| 132 | get { return RestartsParameter.Value.Value; }
|
---|
| 133 | set { RestartsParameter.Value.Value = value; }
|
---|
| 134 | }
|
---|
| 135 | #endregion
|
---|
| 136 |
|
---|
| 137 | public override bool Maximization {
|
---|
| 138 | get { return true; } // return log likelihood (instead of negative log likelihood as in GPR
|
---|
| 139 | }
|
---|
| 140 |
|
---|
[13200] | 141 | // problem stores a few variables for information exchange from Evaluate() to Analyze()
|
---|
[13209] | 142 | private readonly object problemStateLocker = new object();
|
---|
[13200] | 143 | [Storable]
|
---|
| 144 | private double bestQ;
|
---|
| 145 | [Storable]
|
---|
| 146 | private double[] bestHyperParameters;
|
---|
| 147 | [Storable]
|
---|
| 148 | private IMeanFunction meanFunc;
|
---|
| 149 | [Storable]
|
---|
| 150 | private ICovarianceFunction covFunc;
|
---|
| 151 |
|
---|
[12946] | 152 | public GaussianProcessCovarianceOptimizationProblem()
|
---|
| 153 | : base() {
|
---|
| 154 | Parameters.Add(new ValueParameter<IRegressionProblemData>(ProblemDataParameterName, "The data for the regression problem", new RegressionProblemData()));
|
---|
| 155 | Parameters.Add(new FixedValueParameter<IntValue>(ConstantOptIterationsParameterName, "Number of optimization steps for hyperparameter values", new IntValue(50)));
|
---|
| 156 | Parameters.Add(new FixedValueParameter<IntValue>(RestartsParameterName, "The number of random restarts for constant optimization.", new IntValue(10)));
|
---|
| 157 | Parameters["Restarts"].Hidden = true;
|
---|
| 158 | var g = new SimpleSymbolicExpressionGrammar();
|
---|
| 159 | g.AddSymbols(new string[] { "Sum", "Product" }, 2, 2);
|
---|
| 160 | g.AddTerminalSymbols(new string[]
|
---|
| 161 | {
|
---|
| 162 | "Linear",
|
---|
| 163 | "LinearArd",
|
---|
| 164 | "MaternIso1",
|
---|
| 165 | "MaternIso3",
|
---|
| 166 | "MaternIso5",
|
---|
| 167 | "NeuralNetwork",
|
---|
| 168 | "Periodic",
|
---|
| 169 | "PiecewisePolynomial0",
|
---|
| 170 | "PiecewisePolynomial1",
|
---|
| 171 | "PiecewisePolynomial2",
|
---|
| 172 | "PiecewisePolynomial3",
|
---|
| 173 | "Polynomial2",
|
---|
| 174 | "Polynomial3",
|
---|
| 175 | "RationalQuadraticArd",
|
---|
| 176 | "RationalQuadraticIso",
|
---|
| 177 | "SpectralMixture1",
|
---|
| 178 | "SpectralMixture3",
|
---|
| 179 | "SpectralMixture5",
|
---|
| 180 | "SquaredExponentialArd",
|
---|
| 181 | "SquaredExponentialIso"
|
---|
| 182 | });
|
---|
| 183 | base.Encoding = new SymbolicExpressionTreeEncoding(g, 10, 5);
|
---|
| 184 | }
|
---|
| 185 |
|
---|
[13209] | 186 | public void InitializeState() { ClearState(); }
|
---|
| 187 | public void ClearState() {
|
---|
[13200] | 188 | meanFunc = null;
|
---|
| 189 | covFunc = null;
|
---|
| 190 | bestQ = double.NegativeInfinity;
|
---|
| 191 | bestHyperParameters = null;
|
---|
| 192 | }
|
---|
[12946] | 193 |
|
---|
[13242] | 194 | private readonly object syncRoot = new object();
|
---|
[13234] | 195 | // Does not produce the same result for the same seed when using parallel engine (see below)!
|
---|
[12946] | 196 | public override double Evaluate(ISymbolicExpressionTree tree, IRandom random) {
|
---|
| 197 | var meanFunction = new MeanConst();
|
---|
| 198 | var problemData = ProblemData;
|
---|
| 199 | var ds = problemData.Dataset;
|
---|
| 200 | var targetVariable = problemData.TargetVariable;
|
---|
| 201 | var allowedInputVariables = problemData.AllowedInputVariables.ToArray();
|
---|
| 202 | var nVars = allowedInputVariables.Length;
|
---|
| 203 | var trainingRows = problemData.TrainingIndices.ToArray();
|
---|
| 204 |
|
---|
| 205 | // use the same covariance function for each restart
|
---|
| 206 | var covarianceFunction = TreeToCovarianceFunction(tree);
|
---|
| 207 |
|
---|
| 208 | // allocate hyperparameters
|
---|
| 209 | var hyperParameters = new double[meanFunction.GetNumberOfParameters(nVars) + covarianceFunction.GetNumberOfParameters(nVars) + 1]; // mean + cov + noise
|
---|
| 210 | double[] bestHyperParameters = new double[hyperParameters.Length];
|
---|
| 211 | var bestObjValue = new double[1] { double.MinValue };
|
---|
| 212 |
|
---|
| 213 | // data that is necessary for the objective function
|
---|
| 214 | var data = Tuple.Create(ds, targetVariable, allowedInputVariables, trainingRows, (IMeanFunction)meanFunction, covarianceFunction, bestObjValue);
|
---|
| 215 |
|
---|
| 216 | for (int t = 0; t < Restarts; t++) {
|
---|
| 217 | var prevBest = bestObjValue[0];
|
---|
| 218 | var prevBestHyperParameters = new double[hyperParameters.Length];
|
---|
| 219 | Array.Copy(bestHyperParameters, prevBestHyperParameters, bestHyperParameters.Length);
|
---|
| 220 |
|
---|
| 221 | // initialize hyperparameters
|
---|
| 222 | hyperParameters[0] = ds.GetDoubleValues(targetVariable).Average(); // mean const
|
---|
| 223 |
|
---|
[13234] | 224 | // Evaluate might be called concurrently therefore access to random has to be synchronized.
|
---|
| 225 | // However, results of multiple runs with the same seed will be different when using the parallel engine.
|
---|
[13242] | 226 | lock (syncRoot) {
|
---|
[13234] | 227 | for (int i = 0; i < covarianceFunction.GetNumberOfParameters(nVars); i++) {
|
---|
| 228 | hyperParameters[1 + i] = random.NextDouble() * 2.0 - 1.0;
|
---|
| 229 | }
|
---|
[12946] | 230 | }
|
---|
| 231 | hyperParameters[hyperParameters.Length - 1] = 1.0; // s² = exp(2), TODO: other inits better?
|
---|
| 232 |
|
---|
| 233 | // use alglib.bfgs for hyper-parameter optimization ...
|
---|
| 234 | double epsg = 0;
|
---|
| 235 | double epsf = 0.00001;
|
---|
| 236 | double epsx = 0;
|
---|
| 237 | double stpmax = 1;
|
---|
| 238 | int maxits = ConstantOptIterations;
|
---|
| 239 | alglib.mincgstate state;
|
---|
| 240 | alglib.mincgreport rep;
|
---|
| 241 |
|
---|
| 242 | alglib.mincgcreate(hyperParameters, out state);
|
---|
| 243 | alglib.mincgsetcond(state, epsg, epsf, epsx, maxits);
|
---|
| 244 | alglib.mincgsetstpmax(state, stpmax);
|
---|
| 245 | alglib.mincgoptimize(state, ObjectiveFunction, null, data);
|
---|
| 246 |
|
---|
| 247 | alglib.mincgresults(state, out bestHyperParameters, out rep);
|
---|
| 248 |
|
---|
| 249 | if (rep.terminationtype < 0) {
|
---|
| 250 | // error -> restore previous best quality
|
---|
| 251 | bestObjValue[0] = prevBest;
|
---|
| 252 | Array.Copy(prevBestHyperParameters, bestHyperParameters, prevBestHyperParameters.Length);
|
---|
| 253 | }
|
---|
| 254 | }
|
---|
| 255 |
|
---|
[13200] | 256 | UpdateBestSoFar(bestObjValue[0], bestHyperParameters, meanFunction, covarianceFunction);
|
---|
| 257 |
|
---|
[12946] | 258 | return bestObjValue[0];
|
---|
| 259 | }
|
---|
| 260 |
|
---|
[13200] | 261 | // updates the overall best quality and overall best model for Analyze()
|
---|
| 262 | private void UpdateBestSoFar(double bestQ, double[] bestHyperParameters, IMeanFunction meanFunc, ICovarianceFunction covFunc) {
|
---|
| 263 | lock (problemStateLocker) {
|
---|
| 264 | if (bestQ > this.bestQ) {
|
---|
| 265 | this.bestQ = bestQ;
|
---|
[13201] | 266 | this.bestHyperParameters = new double[bestHyperParameters.Length];
|
---|
| 267 | Array.Copy(bestHyperParameters, this.bestHyperParameters, this.bestHyperParameters.Length);
|
---|
[13200] | 268 | this.meanFunc = meanFunc;
|
---|
| 269 | this.covFunc = covFunc;
|
---|
| 270 | }
|
---|
| 271 | }
|
---|
| 272 | }
|
---|
| 273 |
|
---|
[13160] | 274 | public override void Analyze(ISymbolicExpressionTree[] trees, double[] qualities, ResultCollection results, IRandom random) {
|
---|
| 275 | if (!results.ContainsKey("Best Solution Quality")) {
|
---|
| 276 | results.Add(new Result("Best Solution Quality", typeof(DoubleValue)));
|
---|
| 277 | }
|
---|
| 278 | if (!results.ContainsKey("Best Tree")) {
|
---|
| 279 | results.Add(new Result("Best Tree", typeof(ISymbolicExpressionTree)));
|
---|
| 280 | }
|
---|
| 281 | if (!results.ContainsKey("Best Solution")) {
|
---|
| 282 | results.Add(new Result("Best Solution", typeof(GaussianProcessRegressionSolution)));
|
---|
| 283 | }
|
---|
| 284 |
|
---|
| 285 | var bestQuality = qualities.Max();
|
---|
| 286 |
|
---|
| 287 | if (results["Best Solution Quality"].Value == null || bestQuality > ((DoubleValue)results["Best Solution Quality"].Value).Value) {
|
---|
| 288 | var bestIdx = Array.IndexOf(qualities, bestQuality);
|
---|
| 289 | var bestClone = (ISymbolicExpressionTree)trees[bestIdx].Clone();
|
---|
| 290 | results["Best Tree"].Value = bestClone;
|
---|
| 291 | results["Best Solution Quality"].Value = new DoubleValue(bestQuality);
|
---|
[13200] | 292 | results["Best Solution"].Value = CreateSolution();
|
---|
[13160] | 293 | }
|
---|
| 294 | }
|
---|
| 295 |
|
---|
[13200] | 296 | private IItem CreateSolution() {
|
---|
[13160] | 297 | var problemData = ProblemData;
|
---|
| 298 | var ds = problemData.Dataset;
|
---|
| 299 | var targetVariable = problemData.TargetVariable;
|
---|
| 300 | var allowedInputVariables = problemData.AllowedInputVariables.ToArray();
|
---|
| 301 | var trainingRows = problemData.TrainingIndices.ToArray();
|
---|
| 302 |
|
---|
[13200] | 303 | lock (problemStateLocker) {
|
---|
| 304 | var model = new GaussianProcessModel(ds, targetVariable, allowedInputVariables, trainingRows, bestHyperParameters, (IMeanFunction)meanFunc.Clone(), (ICovarianceFunction)covFunc.Clone());
|
---|
| 305 | model.FixParameters();
|
---|
| 306 | return model.CreateRegressionSolution((IRegressionProblemData)ProblemData.Clone());
|
---|
[13160] | 307 | }
|
---|
| 308 | }
|
---|
| 309 |
|
---|
| 310 | private void ObjectiveFunction(double[] x, ref double func, double[] grad, object obj) {
|
---|
[12946] | 311 | // we want to optimize the model likelihood by changing the hyperparameters and also return the gradient for each hyperparameter
|
---|
| 312 | var data = (Tuple<IDataset, string, string[], int[], IMeanFunction, ICovarianceFunction, double[]>)obj;
|
---|
| 313 | var ds = data.Item1;
|
---|
| 314 | var targetVariable = data.Item2;
|
---|
| 315 | var allowedInputVariables = data.Item3;
|
---|
| 316 | var trainingRows = data.Item4;
|
---|
| 317 | var meanFunction = data.Item5;
|
---|
| 318 | var covarianceFunction = data.Item6;
|
---|
| 319 | var bestObjValue = data.Item7;
|
---|
| 320 | var hyperParameters = x; // the decision variable vector
|
---|
| 321 |
|
---|
| 322 | try {
|
---|
| 323 | var model = new GaussianProcessModel(ds, targetVariable, allowedInputVariables, trainingRows, hyperParameters, meanFunction, covarianceFunction);
|
---|
| 324 |
|
---|
| 325 | func = model.NegativeLogLikelihood; // mincgoptimize, so we return negative likelihood
|
---|
| 326 | bestObjValue[0] = Math.Max(bestObjValue[0], -func); // problem itself is a maximization problem
|
---|
| 327 | var gradients = model.HyperparameterGradients;
|
---|
| 328 | Array.Copy(gradients, grad, gradients.Length);
|
---|
[13209] | 329 | }
|
---|
| 330 | catch (ArgumentException) {
|
---|
[12946] | 331 | // building the GaussianProcessModel might fail, in this case we return the worst possible objective value
|
---|
| 332 | func = 1.0E+300;
|
---|
| 333 | Array.Clear(grad, 0, grad.Length);
|
---|
| 334 | }
|
---|
| 335 | }
|
---|
| 336 |
|
---|
| 337 | private ICovarianceFunction TreeToCovarianceFunction(ISymbolicExpressionTree tree) {
|
---|
| 338 | return TreeToCovarianceFunction(tree.Root.GetSubtree(0).GetSubtree(0)); // skip programroot and startsymbol
|
---|
| 339 | }
|
---|
| 340 |
|
---|
| 341 | private ICovarianceFunction TreeToCovarianceFunction(ISymbolicExpressionTreeNode node) {
|
---|
| 342 | switch (node.Symbol.Name) {
|
---|
| 343 | case "Sum": {
|
---|
| 344 | var sum = new CovarianceSum();
|
---|
| 345 | sum.Terms.Add(TreeToCovarianceFunction(node.GetSubtree(0)));
|
---|
| 346 | sum.Terms.Add(TreeToCovarianceFunction(node.GetSubtree(1)));
|
---|
| 347 | return sum;
|
---|
| 348 | }
|
---|
| 349 | case "Product": {
|
---|
| 350 | var prod = new CovarianceProduct();
|
---|
| 351 | prod.Factors.Add(TreeToCovarianceFunction(node.GetSubtree(0)));
|
---|
| 352 | prod.Factors.Add(TreeToCovarianceFunction(node.GetSubtree(1)));
|
---|
| 353 | return prod;
|
---|
| 354 | }
|
---|
| 355 | // covFunction is cloned by the model so we can reuse instances of terminal covariance functions
|
---|
| 356 | case "Linear": return linear;
|
---|
| 357 | case "LinearArd": return linearArd;
|
---|
| 358 | case "MaternIso1": return maternIso1;
|
---|
| 359 | case "MaternIso3": return maternIso3;
|
---|
| 360 | case "MaternIso5": return maternIso5;
|
---|
| 361 | case "NeuralNetwork": return neuralNetwork;
|
---|
| 362 | case "Periodic": return periodic;
|
---|
| 363 | case "PiecewisePolynomial0": return piecewisePoly0;
|
---|
| 364 | case "PiecewisePolynomial1": return piecewisePoly1;
|
---|
| 365 | case "PiecewisePolynomial2": return piecewisePoly2;
|
---|
| 366 | case "PiecewisePolynomial3": return piecewisePoly3;
|
---|
| 367 | case "Polynomial2": return poly2;
|
---|
| 368 | case "Polynomial3": return poly3;
|
---|
| 369 | case "RationalQuadraticArd": return ratQuadraticArd;
|
---|
| 370 | case "RationalQuadraticIso": return ratQuadraticIso;
|
---|
| 371 | case "SpectralMixture1": return spectralMixture1;
|
---|
| 372 | case "SpectralMixture3": return spectralMixture3;
|
---|
| 373 | case "SpectralMixture5": return spectralMixture5;
|
---|
| 374 | case "SquaredExponentialArd": return sqrExpArd;
|
---|
| 375 | case "SquaredExponentialIso": return sqrExpIso;
|
---|
| 376 | default: throw new InvalidProgramException(string.Format("Found invalid symbol {0}", node.Symbol.Name));
|
---|
| 377 | }
|
---|
| 378 | }
|
---|
| 379 |
|
---|
| 380 |
|
---|
| 381 | // persistence
|
---|
| 382 | [StorableConstructor]
|
---|
[16565] | 383 | private GaussianProcessCovarianceOptimizationProblem(StorableConstructorFlag _) : base(_) { }
|
---|
[12946] | 384 | [StorableHook(HookType.AfterDeserialization)]
|
---|
| 385 | private void AfterDeserialization() {
|
---|
| 386 | }
|
---|
| 387 |
|
---|
| 388 | // cloning
|
---|
| 389 | private GaussianProcessCovarianceOptimizationProblem(GaussianProcessCovarianceOptimizationProblem original, Cloner cloner)
|
---|
| 390 | : base(original, cloner) {
|
---|
[13200] | 391 | bestQ = original.bestQ;
|
---|
| 392 | meanFunc = cloner.Clone(original.meanFunc);
|
---|
| 393 | covFunc = cloner.Clone(original.covFunc);
|
---|
| 394 | if (bestHyperParameters != null) {
|
---|
| 395 | bestHyperParameters = new double[original.bestHyperParameters.Length];
|
---|
| 396 | Array.Copy(original.bestHyperParameters, bestHyperParameters, bestHyperParameters.Length);
|
---|
| 397 | }
|
---|
[12946] | 398 | }
|
---|
| 399 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 400 | return new GaussianProcessCovarianceOptimizationProblem(this, cloner);
|
---|
| 401 | }
|
---|
| 402 |
|
---|
| 403 | public void Load(IRegressionProblemData data) {
|
---|
| 404 | this.ProblemData = data;
|
---|
| 405 | OnProblemDataChanged();
|
---|
| 406 | }
|
---|
| 407 |
|
---|
| 408 | public IRegressionProblemData Export() {
|
---|
| 409 | return ProblemData;
|
---|
| 410 | }
|
---|
| 411 |
|
---|
| 412 | #region events
|
---|
| 413 | public event EventHandler ProblemDataChanged;
|
---|
| 414 |
|
---|
| 415 |
|
---|
| 416 | private void OnProblemDataChanged() {
|
---|
| 417 | var handler = ProblemDataChanged;
|
---|
| 418 | if (handler != null)
|
---|
| 419 | handler(this, EventArgs.Empty);
|
---|
| 420 | }
|
---|
| 421 | #endregion
|
---|
| 422 |
|
---|
| 423 | }
|
---|
| 424 | }
|
---|