Free cookie consent management tool by TermsFeed Policy Generator

source: branches/2990_VariableImpactBasedFeatureSelection/HeuristicLab.Problems.Programmable/3.3/Templates/CompiledSingleObjectiveProblemDefinition.cs @ 17709

Last change on this file since 17709 was 16565, checked in by gkronber, 6 years ago

#2520: merged changes from PersistenceOverhaul branch (r16451:16564) into trunk

File size: 3.7 KB
Line 
1using System.Collections.Generic;
2using HeuristicLab.Core;
3using HeuristicLab.Optimization;
4
5namespace HeuristicLab.Problems.Programmable {
6  public class CompiledSingleObjectiveProblemDefinition : CompiledProblemDefinition, ISingleObjectiveProblemDefinition {
7    public bool Maximization { get { return false; } }
8
9    public override void Initialize() {
10      // Use vars.yourVariable to access variables in the variable store i.e. yourVariable
11      // Define the solution encoding which can also consist of multiple vectors, examples below
12      //Encoding = new BinaryVectorEncoding("b", length: 5);
13      //Encoding = new IntegerVectorEncoding("i", length: 5, min: 2, max: 14, step: 2);
14      //Encoding = new RealVectorEncoding("r", length: 5, min: -1.0, max: 1.0);
15      //Encoding = new PermutationEncoding("p", length: 5, type: PermutationTypes.Absolute);
16      //Encoding = new LinearLinkageEncoding("l", length: 5);
17      //Encoding = new SymbolicExpressionTreeEncoding("s", new SimpleSymbolicExpressionGrammar(), 50, 12);
18      // The encoding can also be a combination
19      //Encoding = new MultiEncoding()
20      //.Add(new BinaryVectorEncoding("b", length: 5))
21      //.Add(new IntegerVectorEncoding("i", length: 5, min: 2, max: 14, step: 4))
22      //.Add(new RealVectorEncoding("r", length: 5, min: -1.0, max: 1.0))
23      //.Add(new PermutationEncoding("p", length: 5, type: PermutationTypes.Absolute))
24      //.Add(new LinearLinkageEncoding("l", length: 5))
25      //.Add(new SymbolicExpressionTreeEncoding("s", new SimpleSymbolicExpressionGrammar(), 50, 12))
26      ;
27      // Add additional initialization code e.g. private variables that you need for evaluating
28    }
29
30    public double Evaluate(Individual individual, IRandom random) {
31      // Use vars.yourVariable to access variables in the variable store i.e. yourVariable
32      var quality = 0.0;
33      //quality = individual.RealVector("r").Sum(x => x * x);
34      return quality;
35    }
36
37    public void Analyze(Individual[] individuals, double[] qualities, ResultCollection results, IRandom random) {
38      // Use vars.yourVariable to access variables in the variable store i.e. yourVariable
39      // Write or update results given the range of vectors and resulting qualities
40      // Uncomment the following lines if you want to retrieve the best individual
41
42      //var orderedIndividuals = individuals.Zip(qualities, (i, q) => new { Individual = i, Quality = q }).OrderBy(z => z.Quality);
43      //var best = Maximization ? orderedIndividuals.Last().Individual : orderedIndividuals.First().Individual;
44
45      //if (!results.ContainsKey("Best Solution")) {
46      //  results.Add(new Result("Best Solution", typeof(RealVector)));
47      //}
48      //results["Best Solution"].Value = (IItem)best.RealVector("r").Clone();
49    }
50
51    public IEnumerable<Individual> GetNeighbors(Individual individual, IRandom random) {
52      // Use vars.yourVariable to access variables in the variable store i.e. yourVariable
53      // Create new vectors, based on the given one that represent small changes
54      // This method is only called from move-based algorithms (Local Search, Simulated Annealing, etc.)
55      while (true) {
56        // Algorithm will draw only a finite amount of samples
57        // Change to a for-loop to return a concrete amount of neighbors
58        var neighbor = individual.Copy();
59        // For instance, perform a single bit-flip in a binary parameter
60        //var bIndex = random.Next(neighbor.BinaryVector("b").Length);
61        //neighbor.BinaryVector("b")[bIndex] = !neighbor.BinaryVector("b")[bIndex];
62        yield return neighbor;
63      }
64    }
65
66    // Implement further classes and methods
67  }
68}
69
Note: See TracBrowser for help on using the repository browser.