1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Linq;
|
---|
24 | using System.Security.Cryptography;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.Encodings.BinaryVectorEncoding;
|
---|
29 | using HeuristicLab.Parameters;
|
---|
30 | using HEAL.Attic;
|
---|
31 | using HeuristicLab.PluginInfrastructure;
|
---|
32 | using HeuristicLab.Problems.Binary;
|
---|
33 | using HeuristicLab.Random;
|
---|
34 |
|
---|
35 | namespace HeuristicLab.Problems.NK {
|
---|
36 | [Item("NK Landscape", "Represents an NK landscape optimization problem.")]
|
---|
37 | [Creatable(CreatableAttribute.Categories.CombinatorialProblems, Priority = 215)]
|
---|
38 | [StorableType("04294537-87F2-4A9F-BC14-7D4CA700F326")]
|
---|
39 | public sealed class NKLandscape : BinaryProblem {
|
---|
40 | public override bool Maximization {
|
---|
41 | get { return false; }
|
---|
42 | }
|
---|
43 |
|
---|
44 | #region Parameters
|
---|
45 | public IValueParameter<BoolMatrix> GeneInteractionsParameter {
|
---|
46 | get { return (IValueParameter<BoolMatrix>)Parameters["GeneInteractions"]; }
|
---|
47 | }
|
---|
48 | public IValueParameter<IntValue> SeedParameter {
|
---|
49 | get { return (IValueParameter<IntValue>)Parameters["ProblemSeed"]; }
|
---|
50 | }
|
---|
51 | public IValueParameter<IntValue> InteractionSeedParameter {
|
---|
52 | get { return (IValueParameter<IntValue>)Parameters["InteractionSeed"]; }
|
---|
53 | }
|
---|
54 | public IValueParameter<IntValue> NrOfInteractionsParameter {
|
---|
55 | get { return (IValueParameter<IntValue>)Parameters["NrOfInteractions"]; }
|
---|
56 | }
|
---|
57 | public IValueParameter<IntValue> NrOfFitnessComponentsParameter {
|
---|
58 | get { return (IValueParameter<IntValue>)Parameters["NrOfFitnessComponents"]; }
|
---|
59 | }
|
---|
60 | public IValueParameter<IntValue> QParameter {
|
---|
61 | get { return (IValueParameter<IntValue>)Parameters["Q"]; }
|
---|
62 | }
|
---|
63 | public IValueParameter<DoubleValue> PParameter {
|
---|
64 | get { return (IValueParameter<DoubleValue>)Parameters["P"]; }
|
---|
65 | }
|
---|
66 | public IValueParameter<DoubleArray> WeightsParameter {
|
---|
67 | get { return (IValueParameter<DoubleArray>)Parameters["Weights"]; }
|
---|
68 | }
|
---|
69 | public IConstrainedValueParameter<IInteractionInitializer> InteractionInitializerParameter {
|
---|
70 | get { return (IConstrainedValueParameter<IInteractionInitializer>)Parameters["InteractionInitializer"]; }
|
---|
71 | }
|
---|
72 | public IConstrainedValueParameter<IWeightsInitializer> WeightsInitializerParameter {
|
---|
73 | get { return (IConstrainedValueParameter<IWeightsInitializer>)Parameters["WeightsInitializer"]; }
|
---|
74 | }
|
---|
75 | #endregion
|
---|
76 |
|
---|
77 | #region Properties
|
---|
78 | public IInteractionInitializer InteractionInitializer {
|
---|
79 | get { return InteractionInitializerParameter.Value; }
|
---|
80 | }
|
---|
81 | public BoolMatrix GeneInteractions {
|
---|
82 | get { return GeneInteractionsParameter.Value; }
|
---|
83 | }
|
---|
84 | public DoubleArray Weights {
|
---|
85 | get { return WeightsParameter.Value; }
|
---|
86 | }
|
---|
87 | public IntValue InteractionSeed {
|
---|
88 | get { return InteractionSeedParameter.Value; }
|
---|
89 | }
|
---|
90 | public IntValue NrOfFitnessComponents {
|
---|
91 | get { return NrOfFitnessComponentsParameter.Value; }
|
---|
92 | }
|
---|
93 | public IntValue NrOfInteractions {
|
---|
94 | get { return NrOfInteractionsParameter.Value; }
|
---|
95 | }
|
---|
96 | public IWeightsInitializer WeightsInitializer {
|
---|
97 | get { return WeightsInitializerParameter.Value; }
|
---|
98 | }
|
---|
99 | public int Q {
|
---|
100 | get { return QParameter.Value.Value; }
|
---|
101 | }
|
---|
102 | public double P {
|
---|
103 | get { return PParameter.Value.Value; }
|
---|
104 | }
|
---|
105 | public IntValue Seed {
|
---|
106 | get { return SeedParameter.Value; }
|
---|
107 | }
|
---|
108 | #endregion
|
---|
109 |
|
---|
110 | [Storable]
|
---|
111 | private MersenneTwister random;
|
---|
112 |
|
---|
113 | [ThreadStatic]
|
---|
114 | private static HashAlgorithm hashAlgorithm;
|
---|
115 |
|
---|
116 | [ThreadStatic]
|
---|
117 | private static HashAlgorithm hashAlgorithmP;
|
---|
118 |
|
---|
119 | private static HashAlgorithm HashAlgorithm {
|
---|
120 | get {
|
---|
121 | if (hashAlgorithm == null) {
|
---|
122 | hashAlgorithm = HashAlgorithm.Create("MD5");
|
---|
123 | }
|
---|
124 | return hashAlgorithm;
|
---|
125 | }
|
---|
126 | }
|
---|
127 |
|
---|
128 | private static HashAlgorithm HashAlgorithmP {
|
---|
129 | get {
|
---|
130 | if (hashAlgorithmP == null) {
|
---|
131 | hashAlgorithmP = HashAlgorithm.Create("SHA1");
|
---|
132 | }
|
---|
133 | return hashAlgorithmP;
|
---|
134 | }
|
---|
135 | }
|
---|
136 |
|
---|
137 | [StorableConstructor]
|
---|
138 | private NKLandscape(StorableConstructorFlag _) : base(_) { }
|
---|
139 | private NKLandscape(NKLandscape original, Cloner cloner)
|
---|
140 | : base(original, cloner) {
|
---|
141 | random = (MersenneTwister)original.random.Clone(cloner);
|
---|
142 | RegisterEventHandlers();
|
---|
143 | }
|
---|
144 | public NKLandscape()
|
---|
145 | : base() {
|
---|
146 | random = new MersenneTwister();
|
---|
147 |
|
---|
148 | Parameters.Add(new ValueParameter<BoolMatrix>("GeneInteractions", "Every column gives the participating genes for each fitness component."));
|
---|
149 | Parameters.Add(new ValueParameter<IntValue>("ProblemSeed", "The seed used for the random number generator.", new IntValue(0)));
|
---|
150 | random.Reset(Seed.Value);
|
---|
151 |
|
---|
152 | Parameters.Add(new ValueParameter<IntValue>("InteractionSeed", "The seed used for the hash function to generate interaction tables.", new IntValue(random.Next())));
|
---|
153 | Parameters.Add(new ValueParameter<IntValue>("NrOfFitnessComponents", "Number of fitness component functions. (nr of columns in the interaction column)", new IntValue(10)));
|
---|
154 | Parameters.Add(new ValueParameter<IntValue>("NrOfInteractions", "Number of genes interacting with each other. (nr of True values per column in the interaction matrix)", new IntValue(3)));
|
---|
155 | Parameters.Add(new ValueParameter<IntValue>("Q", "Number of allowed fitness values in the (virutal) random table, or zero.", new IntValue(0)));
|
---|
156 | Parameters.Add(new ValueParameter<DoubleValue>("P", "Probability of any entry in the (virtual) random table being zero.", new DoubleValue(0)));
|
---|
157 | Parameters.Add(new ValueParameter<DoubleArray>("Weights", "The weights for the component functions. If shorted, will be repeated.", new DoubleArray(new[] { 1.0 })));
|
---|
158 | Parameters.Add(new ConstrainedValueParameter<IInteractionInitializer>("InteractionInitializer", "Initialize interactions within the component functions."));
|
---|
159 | Parameters.Add(new ConstrainedValueParameter<IWeightsInitializer>("WeightsInitializer", "Operator to initialize the weights distribution."));
|
---|
160 |
|
---|
161 | //allow just the standard NK[P,Q] formulations at the moment
|
---|
162 | WeightsParameter.Hidden = true;
|
---|
163 | InteractionInitializerParameter.Hidden = true;
|
---|
164 | WeightsInitializerParameter.Hidden = true;
|
---|
165 | EncodingParameter.Hidden = true;
|
---|
166 |
|
---|
167 | InitializeInteractionInitializerParameter();
|
---|
168 | InitializeWeightsInitializerParameter();
|
---|
169 |
|
---|
170 | InitializeOperators();
|
---|
171 | InitializeInteractions();
|
---|
172 | RegisterEventHandlers();
|
---|
173 | }
|
---|
174 |
|
---|
175 | private void InitializeInteractionInitializerParameter() {
|
---|
176 | foreach (var initializer in ApplicationManager.Manager.GetInstances<IInteractionInitializer>())
|
---|
177 | InteractionInitializerParameter.ValidValues.Add(initializer);
|
---|
178 | InteractionInitializerParameter.Value = InteractionInitializerParameter.ValidValues.First(v => v is RandomInteractionsInitializer);
|
---|
179 | }
|
---|
180 |
|
---|
181 | private void InitializeWeightsInitializerParameter() {
|
---|
182 | foreach (var initializer in ApplicationManager.Manager.GetInstances<IWeightsInitializer>())
|
---|
183 | WeightsInitializerParameter.ValidValues.Add(initializer);
|
---|
184 | WeightsInitializerParameter.Value = WeightsInitializerParameter.ValidValues.First(v => v is EqualWeightsInitializer);
|
---|
185 | }
|
---|
186 |
|
---|
187 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
188 | return new NKLandscape(this, cloner);
|
---|
189 | }
|
---|
190 |
|
---|
191 | [StorableHook(HookType.AfterDeserialization)]
|
---|
192 | private void AfterDeserialization() {
|
---|
193 | RegisterEventHandlers();
|
---|
194 | }
|
---|
195 |
|
---|
196 | private void RegisterEventHandlers() {
|
---|
197 | NrOfInteractionsParameter.ValueChanged += InteractionParameter_ValueChanged;
|
---|
198 | NrOfInteractionsParameter.Value.ValueChanged += InteractionParameter_ValueChanged;
|
---|
199 | NrOfFitnessComponentsParameter.ValueChanged += InteractionParameter_ValueChanged;
|
---|
200 | NrOfFitnessComponentsParameter.Value.ValueChanged += InteractionParameter_ValueChanged;
|
---|
201 | InteractionInitializerParameter.ValueChanged += InteractionParameter_ValueChanged;
|
---|
202 | WeightsInitializerParameter.ValueChanged += WeightsInitializerParameter_ValueChanged;
|
---|
203 | SeedParameter.ValueChanged += SeedParameter_ValueChanged;
|
---|
204 | SeedParameter.Value.ValueChanged += SeedParameter_ValueChanged;
|
---|
205 |
|
---|
206 | RegisterInteractionInitializerParameterEvents();
|
---|
207 | RegisterWeightsParameterEvents();
|
---|
208 | }
|
---|
209 |
|
---|
210 | private void RegisterWeightsParameterEvents() {
|
---|
211 | foreach (var vv in WeightsInitializerParameter.ValidValues) {
|
---|
212 | foreach (var p in vv.Parameters) {
|
---|
213 | if (p.ActualValue != null && p.ActualValue is IStringConvertibleValue) {
|
---|
214 | var v = (IStringConvertibleValue)p.ActualValue;
|
---|
215 | v.ValueChanged += WeightsInitializerParameter_ValueChanged;
|
---|
216 | }
|
---|
217 | }
|
---|
218 | }
|
---|
219 | }
|
---|
220 |
|
---|
221 | private void RegisterInteractionInitializerParameterEvents() {
|
---|
222 | foreach (var vv in InteractionInitializerParameter.ValidValues) {
|
---|
223 | foreach (var p in vv.Parameters) {
|
---|
224 | if (p.ActualValue != null && p.ActualValue is IStringConvertibleValue) {
|
---|
225 | var v = (IStringConvertibleValue)p.ActualValue;
|
---|
226 | v.ValueChanged += InteractionParameter_ValueChanged;
|
---|
227 | } else if (p.ActualValue != null && p is IConstrainedValueParameter<IBinaryVectorComparer>) {
|
---|
228 | ((IConstrainedValueParameter<IBinaryVectorComparer>)p).ValueChanged +=
|
---|
229 | InteractionParameter_ValueChanged;
|
---|
230 | }
|
---|
231 | }
|
---|
232 | }
|
---|
233 | }
|
---|
234 |
|
---|
235 | protected override void LengthParameter_ValueChanged(object sender, EventArgs e) {
|
---|
236 | NrOfFitnessComponentsParameter.Value = new IntValue(Length);
|
---|
237 | }
|
---|
238 |
|
---|
239 | private void SeedParameter_ValueChanged(object sender, EventArgs e) {
|
---|
240 | random.Reset(Seed.Value);
|
---|
241 | InteractionSeed.Value = random.Next();
|
---|
242 | InitializeInteractions();
|
---|
243 | }
|
---|
244 |
|
---|
245 | private void WeightsInitializerParameter_ValueChanged(object sender, EventArgs e) {
|
---|
246 | InitializeWeights();
|
---|
247 | }
|
---|
248 |
|
---|
249 | private void InteractionParameter_ValueChanged(object sender, EventArgs e) {
|
---|
250 | InitializeInteractions();
|
---|
251 | }
|
---|
252 |
|
---|
253 | private void InitializeOperators() {
|
---|
254 | NKBitFlipMoveEvaluator nkEvaluator = new NKBitFlipMoveEvaluator();
|
---|
255 | Encoding.ConfigureOperator(nkEvaluator);
|
---|
256 | Operators.Add(nkEvaluator);
|
---|
257 | }
|
---|
258 |
|
---|
259 | private void InitializeInteractions() {
|
---|
260 | if (InteractionInitializer != null)
|
---|
261 | GeneInteractionsParameter.Value = InteractionInitializer.InitializeInterations(
|
---|
262 | Length,
|
---|
263 | NrOfFitnessComponents.Value,
|
---|
264 | NrOfInteractions.Value, random);
|
---|
265 | }
|
---|
266 |
|
---|
267 | private void InitializeWeights() {
|
---|
268 | if (WeightsInitializerParameter.Value != null)
|
---|
269 | WeightsParameter.Value = new DoubleArray(
|
---|
270 | WeightsInitializer.GetWeights(NrOfFitnessComponents.Value)
|
---|
271 | .ToArray());
|
---|
272 | }
|
---|
273 |
|
---|
274 | #region Evaluation function
|
---|
275 | private static long Hash(long x, HashAlgorithm hashAlg) {
|
---|
276 | return BitConverter.ToInt64(hashAlg.ComputeHash(BitConverter.GetBytes(x), 0, 8), 0);
|
---|
277 | }
|
---|
278 |
|
---|
279 | public static double F_i(long x, long i, long g_i, long seed, int q, double p) {
|
---|
280 | var hash = new Func<long, long>(y => Hash(y, HashAlgorithm));
|
---|
281 | var fi = Math.Abs((double)hash((x & g_i) ^ hash(g_i ^ hash(i ^ seed)))) / long.MaxValue;
|
---|
282 | if (q > 0) { fi = Math.Round(fi * q) / q; }
|
---|
283 | if (p > 0) {
|
---|
284 | hash = y => Hash(y, HashAlgorithmP);
|
---|
285 | var r = Math.Abs((double)hash((x & g_i) ^ hash(g_i ^ hash(i ^ seed)))) / long.MaxValue;
|
---|
286 | fi = (r <= p) ? 0 : fi;
|
---|
287 | }
|
---|
288 | return fi;
|
---|
289 | }
|
---|
290 |
|
---|
291 | private static double F(long x, long[] g, double[] w, long seed, ref double[] f_i, int q, double p) {
|
---|
292 | double value = 0;
|
---|
293 | for (int i = 0; i < g.Length; i++) {
|
---|
294 | f_i[i] = F_i(x, i, g[i], seed, q, p);
|
---|
295 | value += w[i % w.Length] * f_i[i];
|
---|
296 | }
|
---|
297 | return value;
|
---|
298 | }
|
---|
299 |
|
---|
300 | public static long Encode(BinaryVector v) {
|
---|
301 | long x = 0;
|
---|
302 | for (int i = 0; i < 64 && i < v.Length; i++) {
|
---|
303 | x |= (v[i] ? (long)1 : (long)0) << i;
|
---|
304 | }
|
---|
305 | return x;
|
---|
306 | }
|
---|
307 |
|
---|
308 | public static long[] Encode(BoolMatrix m) {
|
---|
309 | long[] x = new long[m.Columns];
|
---|
310 | for (int c = 0; c < m.Columns; c++) {
|
---|
311 | x[c] = 0;
|
---|
312 | for (int r = 0; r < 64 && r < m.Rows; r++) {
|
---|
313 | x[c] |= (m[r, c] ? (long)1 : (long)0) << r;
|
---|
314 | }
|
---|
315 | }
|
---|
316 | return x;
|
---|
317 | }
|
---|
318 |
|
---|
319 | public static double[] Normalize(DoubleArray weights) {
|
---|
320 | double sum = 0;
|
---|
321 | double[] w = new double[weights.Length];
|
---|
322 | foreach (var v in weights) {
|
---|
323 | sum += Math.Abs(v);
|
---|
324 | }
|
---|
325 | for (int i = 0; i < weights.Length; i++) {
|
---|
326 | w[i] = Math.Abs(weights[i]) / sum;
|
---|
327 | }
|
---|
328 | return w;
|
---|
329 | }
|
---|
330 |
|
---|
331 | public static double Evaluate(BinaryVector vector, BoolMatrix interactions, DoubleArray weights, int seed, out double[] f_i, int q, double p) {
|
---|
332 | long x = Encode(vector);
|
---|
333 | long[] g = Encode(interactions);
|
---|
334 | double[] w = Normalize(weights);
|
---|
335 | f_i = new double[interactions.Columns];
|
---|
336 | return F(x, g, w, (long)seed, ref f_i, q, p);
|
---|
337 | }
|
---|
338 |
|
---|
339 | public override double Evaluate(BinaryVector vector, IRandom random) {
|
---|
340 | double[] f_i; //useful for debugging
|
---|
341 | double quality = Evaluate(vector, GeneInteractions, Weights, InteractionSeed.Value, out f_i, Q, P);
|
---|
342 | return quality;
|
---|
343 | }
|
---|
344 | #endregion
|
---|
345 | }
|
---|
346 | }
|
---|