1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Drawing;
|
---|
25 | using System.Linq;
|
---|
26 | using System.Windows.Forms;
|
---|
27 | using System.Windows.Forms.DataVisualization.Charting;
|
---|
28 | using HeuristicLab.MainForm;
|
---|
29 | using HeuristicLab.MainForm.WindowsForms;
|
---|
30 |
|
---|
31 | namespace HeuristicLab.Problems.DataAnalysis.Views {
|
---|
32 | [View("Residual Histogram")]
|
---|
33 | [Content(typeof(IRegressionSolution))]
|
---|
34 | public partial class RegressionSolutionResidualHistogram : DataAnalysisSolutionEvaluationView {
|
---|
35 |
|
---|
36 | #region variables
|
---|
37 | protected const string ALL_SAMPLES = "All samples";
|
---|
38 | protected const string TRAINING_SAMPLES = "Training samples";
|
---|
39 | protected const string TEST_SAMPLES = "Test samples";
|
---|
40 | /// <summary>
|
---|
41 | /// approximate amount of bins
|
---|
42 | /// </summary>
|
---|
43 | protected const double bins = 25;
|
---|
44 | #endregion
|
---|
45 |
|
---|
46 | public new IRegressionSolution Content {
|
---|
47 | get { return (IRegressionSolution)base.Content; }
|
---|
48 | set { base.Content = value; }
|
---|
49 | }
|
---|
50 |
|
---|
51 | public RegressionSolutionResidualHistogram()
|
---|
52 | : base() {
|
---|
53 | InitializeComponent();
|
---|
54 | foreach (string series in new List<String>() { ALL_SAMPLES, TRAINING_SAMPLES, TEST_SAMPLES }) {
|
---|
55 | chart.Series.Add(series);
|
---|
56 | chart.Series[series].LegendText = series;
|
---|
57 | chart.Series[series].ChartType = SeriesChartType.Column;
|
---|
58 | chart.Series[series]["PointWidth"] = "0.9";
|
---|
59 | chart.Series[series].BorderWidth = 1;
|
---|
60 | chart.Series[series].BorderDashStyle = ChartDashStyle.Solid;
|
---|
61 | chart.Series[series].BorderColor = Color.Black;
|
---|
62 | chart.Series[series].ToolTip = series + " Y = #VALY from #CUSTOMPROPERTY(from) to #CUSTOMPROPERTY(to)";
|
---|
63 | }
|
---|
64 | //configure axis
|
---|
65 | chart.CustomizeAllChartAreas();
|
---|
66 | chart.ChartAreas[0].AxisX.Title = "Residuals";
|
---|
67 | chart.ChartAreas[0].CursorX.IsUserSelectionEnabled = true;
|
---|
68 | chart.ChartAreas[0].AxisX.ScaleView.Zoomable = true;
|
---|
69 | chart.ChartAreas[0].CursorX.Interval = 1;
|
---|
70 | chart.ChartAreas[0].CursorY.Interval = 1;
|
---|
71 | chart.ChartAreas[0].AxisY.Title = "Relative Frequency";
|
---|
72 | chart.ChartAreas[0].CursorY.IsUserSelectionEnabled = true;
|
---|
73 | chart.ChartAreas[0].AxisY.ScaleView.Zoomable = true;
|
---|
74 | chart.ChartAreas[0].AxisY.IsStartedFromZero = true;
|
---|
75 | }
|
---|
76 |
|
---|
77 | private void RedrawChart() {
|
---|
78 | foreach (Series series in chart.Series) {
|
---|
79 | series.Points.Clear();
|
---|
80 | }
|
---|
81 | if (Content != null) {
|
---|
82 | List<double> residuals = CalculateResiduals(Content);
|
---|
83 |
|
---|
84 | double max = 0.0;
|
---|
85 | foreach (Series series in chart.Series) {
|
---|
86 | CalculateFrequencies(residuals, series);
|
---|
87 | double seriesMax = series.Points.Select(p => p.YValues.First()).Max();
|
---|
88 | max = max < seriesMax ? seriesMax : max;
|
---|
89 | }
|
---|
90 |
|
---|
91 | // ALL_SAMPLES has to be calculated to know its highest frequency, but it is not shown in the beginning
|
---|
92 | chart.Series.First(s => s.Name.Equals(ALL_SAMPLES)).Points.Clear();
|
---|
93 |
|
---|
94 | double roundedMax, intervalWidth;
|
---|
95 | CalculateResidualParameters(residuals, out roundedMax, out intervalWidth);
|
---|
96 |
|
---|
97 | ChartArea chartArea = chart.ChartAreas[0];
|
---|
98 | chartArea.AxisX.Title = string.Format("Residuals ({0})", Content.ProblemData.TargetVariable);
|
---|
99 | chartArea.AxisX.Minimum = -roundedMax - intervalWidth;
|
---|
100 | chartArea.AxisX.Maximum = roundedMax + intervalWidth;
|
---|
101 | // get the highest frequency of a residual of any series
|
---|
102 | chartArea.AxisY.Maximum = max;
|
---|
103 | if (chartArea.AxisY.Maximum < 0.1) {
|
---|
104 | chartArea.AxisY.Interval = 0.01;
|
---|
105 | chartArea.AxisY.Maximum = Math.Ceiling(chartArea.AxisY.Maximum * 100) / 100;
|
---|
106 | } else {
|
---|
107 | chartArea.AxisY.Interval = 0.1;
|
---|
108 | chartArea.AxisY.Maximum = Math.Ceiling(chartArea.AxisY.Maximum * 10) / 10;
|
---|
109 | }
|
---|
110 | chartArea.AxisX.Interval = intervalWidth;
|
---|
111 | int curBins = (int)Math.Round((roundedMax * 2) / intervalWidth);
|
---|
112 | //shifts the x axis label so that zero is in the middle
|
---|
113 | if (curBins % 2 == 0)
|
---|
114 | chartArea.AxisX.IntervalOffset = intervalWidth;
|
---|
115 | else
|
---|
116 | chartArea.AxisX.IntervalOffset = intervalWidth / 2;
|
---|
117 | }
|
---|
118 | }
|
---|
119 |
|
---|
120 | private List<double> CalculateResiduals(IRegressionSolution solution) {
|
---|
121 | List<double> residuals = new List<double>();
|
---|
122 |
|
---|
123 | IRegressionProblemData problemdata = solution.ProblemData;
|
---|
124 | List<double> targetValues = problemdata.Dataset.GetDoubleValues(Content.ProblemData.TargetVariable).ToList();
|
---|
125 | List<double> estimatedValues = solution.EstimatedValues.ToList();
|
---|
126 |
|
---|
127 | for (int i = 0; i < solution.ProblemData.Dataset.Rows; i++) {
|
---|
128 | if (double.IsNaN(estimatedValues[i]) || double.IsInfinity(estimatedValues[i])) continue;
|
---|
129 | if (double.IsNaN(targetValues[i]) || double.IsInfinity(targetValues[i])) continue;
|
---|
130 | double residual = estimatedValues[i] - targetValues[i];
|
---|
131 | residuals.Add(residual);
|
---|
132 | }
|
---|
133 | return residuals;
|
---|
134 | }
|
---|
135 |
|
---|
136 | private void CalculateFrequencies(List<double> residualValues, Series series) {
|
---|
137 | double roundedMax, intervalWidth;
|
---|
138 | CalculateResidualParameters(residualValues, out roundedMax, out intervalWidth);
|
---|
139 |
|
---|
140 | IEnumerable<double> relevantResiduals = residualValues;
|
---|
141 | IRegressionProblemData problemdata = Content.ProblemData;
|
---|
142 | if (series.Name.Equals(TRAINING_SAMPLES)) {
|
---|
143 | relevantResiduals = residualValues.Skip(problemdata.TrainingPartition.Start).Take(problemdata.TrainingPartition.Size);
|
---|
144 | } else if (series.Name.Equals(TEST_SAMPLES)) {
|
---|
145 | relevantResiduals = residualValues.Skip(problemdata.TestPartition.Start).Take(problemdata.TestPartition.Size);
|
---|
146 | }
|
---|
147 |
|
---|
148 | double intervalCenter = intervalWidth / 2.0;
|
---|
149 | double sampleCount = relevantResiduals.Count();
|
---|
150 | double current = -roundedMax;
|
---|
151 | DataPointCollection seriesPoints = series.Points;
|
---|
152 |
|
---|
153 | for (int i = 0; i <= bins; i++) {
|
---|
154 | IEnumerable<double> help = relevantResiduals.Where(x => x >= (current - intervalCenter) && x < (current + intervalCenter));
|
---|
155 | seriesPoints.AddXY(current, help.Count() / sampleCount);
|
---|
156 | seriesPoints[seriesPoints.Count - 1]["from"] = (current - intervalCenter).ToString();
|
---|
157 | seriesPoints[seriesPoints.Count - 1]["to"] = (current + intervalCenter).ToString();
|
---|
158 | current += intervalWidth;
|
---|
159 | }
|
---|
160 | }
|
---|
161 |
|
---|
162 | private void ToggleSeriesData(Series series) {
|
---|
163 | if (series.Points.Count > 0) { //checks if series is shown
|
---|
164 | if (chart.Series.Any(s => s != series && s.Points.Count > 0)) {
|
---|
165 | series.Points.Clear();
|
---|
166 | }
|
---|
167 | } else if (Content != null) {
|
---|
168 | List<double> residuals = CalculateResiduals(Content);
|
---|
169 | CalculateFrequencies(residuals, series);
|
---|
170 | chart.Legends[series.Legend].ForeColor = Color.Black;
|
---|
171 | chart.Refresh();
|
---|
172 | }
|
---|
173 | }
|
---|
174 |
|
---|
175 | private static void CalculateResidualParameters(List<double> residuals, out double roundedMax, out double intervalWidth) {
|
---|
176 | double realMax = Math.Max(Math.Abs(residuals.Min()), Math.Abs(residuals.Max()));
|
---|
177 | roundedMax = HumanRoundMax(realMax);
|
---|
178 | intervalWidth = (roundedMax * 2.0) / bins;
|
---|
179 | intervalWidth = HumanRoundMax(intervalWidth);
|
---|
180 | // sets roundedMax to a value, so that zero will be in the middle of the x axis
|
---|
181 | double help = realMax / intervalWidth;
|
---|
182 | help = help % 1 < 0.5 ? (int)help : (int)help + 1;
|
---|
183 | roundedMax = help * intervalWidth;
|
---|
184 | }
|
---|
185 |
|
---|
186 | private static double HumanRoundMax(double max) {
|
---|
187 | double base10;
|
---|
188 | if (max > 0) base10 = Math.Pow(10.0, Math.Floor(Math.Log10(max)));
|
---|
189 | else base10 = Math.Pow(10.0, Math.Ceiling(Math.Log10(-max)));
|
---|
190 | double rounding = (max > 0) ? base10 : -base10;
|
---|
191 | while (rounding < max) rounding += base10;
|
---|
192 | return rounding;
|
---|
193 | }
|
---|
194 |
|
---|
195 | #region events
|
---|
196 | protected override void RegisterContentEvents() {
|
---|
197 | base.RegisterContentEvents();
|
---|
198 | Content.ModelChanged += new EventHandler(Content_ModelChanged);
|
---|
199 | Content.ProblemDataChanged += new EventHandler(Content_ProblemDataChanged);
|
---|
200 | }
|
---|
201 | protected override void DeregisterContentEvents() {
|
---|
202 | base.DeregisterContentEvents();
|
---|
203 | Content.ModelChanged -= new EventHandler(Content_ModelChanged);
|
---|
204 | Content.ProblemDataChanged -= new EventHandler(Content_ProblemDataChanged);
|
---|
205 | }
|
---|
206 |
|
---|
207 | protected override void OnContentChanged() {
|
---|
208 | base.OnContentChanged();
|
---|
209 | RedrawChart();
|
---|
210 | }
|
---|
211 | private void Content_ProblemDataChanged(object sender, EventArgs e) {
|
---|
212 | RedrawChart();
|
---|
213 | }
|
---|
214 | private void Content_ModelChanged(object sender, EventArgs e) {
|
---|
215 | RedrawChart();
|
---|
216 | }
|
---|
217 | private void chart_MouseDown(object sender, MouseEventArgs e) {
|
---|
218 | HitTestResult result = chart.HitTest(e.X, e.Y);
|
---|
219 | if (result.ChartElementType == ChartElementType.LegendItem) {
|
---|
220 | ToggleSeriesData(result.Series);
|
---|
221 | }
|
---|
222 | }
|
---|
223 | private void chart_MouseMove(object sender, MouseEventArgs e) {
|
---|
224 | HitTestResult result = chart.HitTest(e.X, e.Y);
|
---|
225 | if (result.ChartElementType == ChartElementType.LegendItem)
|
---|
226 | Cursor = Cursors.Hand;
|
---|
227 | else
|
---|
228 | Cursor = Cursors.Default;
|
---|
229 | }
|
---|
230 | private void chart_CustomizeLegend(object sender, CustomizeLegendEventArgs e) {
|
---|
231 | if (chart.Series.Count != 3) return;
|
---|
232 | e.LegendItems[0].Cells[1].ForeColor = chart.Series[ALL_SAMPLES].Points.Count == 0 ? Color.Gray : Color.Black;
|
---|
233 | e.LegendItems[1].Cells[1].ForeColor = chart.Series[TRAINING_SAMPLES].Points.Count == 0 ? Color.Gray : Color.Black;
|
---|
234 | e.LegendItems[2].Cells[1].ForeColor = chart.Series[TEST_SAMPLES].Points.Count == 0 ? Color.Gray : Color.Black;
|
---|
235 | }
|
---|
236 | #endregion
|
---|
237 | }
|
---|
238 | }
|
---|