Free cookie consent management tool by TermsFeed Policy Generator

source: branches/2990_VariableImpactBasedFeatureSelection/HeuristicLab.Common/3.3/Statistics/EmpiricalCumulativeDistributionFunction.cs @ 17943

Last change on this file since 17943 was 16565, checked in by gkronber, 6 years ago

#2520: merged changes from PersistenceOverhaul branch (r16451:16564) into trunk

File size: 4.9 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25
26namespace HeuristicLab.Common {
27  public class EmpiricalCumulativeDistributionFunction {
28    private static readonly AbscissaComparer abscissaComparer = new AbscissaComparer();
29    private static readonly OrdinateComparer ordinateComparer = new OrdinateComparer();
30
31    private List<Point2D<double>> ecdf;
32    public IEnumerable<Point2D<double>> SupportingPoints {
33      get { return ecdf; }
34    }
35   
36    public EmpiricalCumulativeDistributionFunction(IList<double> sample) {
37      ecdf = new List<Point2D<double>>();
38
39      var len = sample.Count;
40      var cumulative = 0;
41      var localcumulative = 0;
42      var prev = double.NaN;
43      foreach (var p in sample.OrderBy(x => x)) {
44        if (double.IsNaN(p) || double.IsInfinity(p)) continue;
45        if (!double.IsNaN(prev) && prev < p) {
46          cumulative += localcumulative;
47          localcumulative = 0;
48          ecdf.Add(Point2D<double>.Create(prev, cumulative / (double)len));
49        }
50        prev = p;
51        localcumulative++;
52      }
53      if (!double.IsNaN(prev)) {
54        cumulative += localcumulative;
55        ecdf.Add(Point2D<double>.Create(prev, cumulative / (double)len));
56      }
57    }
58    public EmpiricalCumulativeDistributionFunction(IEnumerable<Point2D<double>> ecdf) {
59      this.ecdf = new List<Point2D<double>>();
60      var prev = Point2D<double>.Empty;
61      foreach (var point in ecdf) {
62        if (point.Y < 0 || point.Y > 1 || double.IsNaN(point.X) || double.IsInfinity(point.X)
63          || point.IsEmpty || (!prev.IsEmpty && (point.X <= prev.X || point.Y <= prev.Y)))
64          throw new ArgumentException("Invalid supporting points of a cumulative distribution function. Must be strictly monotonically increasing in both X and Y with X in R and Y in [0;1].", "ecdf");
65
66        this.ecdf.Add(point);
67        prev = point;
68      }
69    }
70
71    public double Evaluate(double x) {
72      if (ecdf.Count == 0) return double.NaN;
73      if (x < ecdf[0].X) return 0;
74      var last = ecdf[ecdf.Count - 1];
75      if (x >= last.X) return last.Y;
76
77      var index = ecdf.BinarySearch(Point2D<double>.Create(x, 0), abscissaComparer);
78      if (index >= 0) return ecdf[index].Y;
79      return ecdf[~index - 1].Y;
80    }
81
82    public double InterpolateLinear(double x) {
83      if (ecdf.Count == 0) return double.NaN;
84      if (x < ecdf[0].X) return 0;
85      var last = ecdf[ecdf.Count - 1];
86      if (x >= last.X) return last.Y;
87
88      var index = ecdf.BinarySearch(Point2D<double>.Create(x, 0), abscissaComparer);
89      if (index >= 0) return ecdf[index].Y;
90      var prev = ecdf[~index - 1];
91      var next = ecdf[~index];
92      return prev.Y + (next.Y - prev.Y) * ((x - prev.X) / (next.X - prev.X));
93    }
94
95    public double InterpolateNearest(double x) {
96      if (ecdf.Count == 0) return double.NaN;
97      if (x < ecdf[0].X) return 0;
98      var last = ecdf[ecdf.Count - 1];
99      if (x >= last.X) return last.Y;
100
101      var index = ecdf.BinarySearch(Point2D<double>.Create(x, 0), abscissaComparer);
102      if (index >= 0) return ecdf[index].Y;
103      var prev = ecdf[~index - 1];
104      var next = ecdf[~index];
105      if (x - prev.X < next.X - x) return prev.Y;
106      return next.Y;
107    }
108
109    public double Inverse(double y) {
110      if (ecdf.Count == 0) return double.NaN;
111      if (y < 0 || y > 1) throw new ArgumentException("parameter must be in interval [0;1]", "y");
112      if (ecdf[ecdf.Count - 1].Y < y) return double.PositiveInfinity;
113      var index = ecdf.BinarySearch(Point2D<double>.Create(0, y), ordinateComparer);
114      if (index >= 0) return ecdf[index].X;
115      return ecdf[Math.Max(~index - 1, 0)].X;
116    }
117
118    private class AbscissaComparer : Comparer<Point2D<double>> {
119      public override int Compare(Point2D<double> x, Point2D<double> y) {
120        return x.X.CompareTo(y.X);
121      }
122    }
123
124    private class OrdinateComparer : Comparer<Point2D<double>> {
125      public override int Compare(Point2D<double> x, Point2D<double> y) {
126        return x.Y.CompareTo(y.Y);
127      }
128    }
129  }
130}
Note: See TracBrowser for help on using the repository browser.