Free cookie consent management tool by TermsFeed Policy Generator

source: branches/2988_ModelsOfModels2/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Interpreter/SymbolicDataAnalysisExpressionTreeInterpreter.cs @ 17021

Last change on this file since 17021 was 16899, checked in by msemenki, 6 years ago

#2988: New version of class structure.

File size: 23.7 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using HeuristicLab.Common;
25using HeuristicLab.Core;
26using HeuristicLab.Data;
27using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
28using HeuristicLab.Parameters;
29using HEAL.Attic;
30
31namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
32  [StorableType("FB94F333-B32A-44FB-A561-CBDE76693D20")]
33  [Item("SymbolicDataAnalysisExpressionTreeInterpreter", "Interpreter for symbolic expression trees including automatically defined functions.")]
34  public class SymbolicDataAnalysisExpressionTreeInterpreter : ParameterizedNamedItem,
35    ISymbolicDataAnalysisExpressionTreeInterpreter {
36    private const string CheckExpressionsWithIntervalArithmeticParameterName = "CheckExpressionsWithIntervalArithmetic";
37    private const string CheckExpressionsWithIntervalArithmeticParameterDescription = "Switch that determines if the interpreter checks the validity of expressions with interval arithmetic before evaluating the expression.";
38    private const string EvaluatedSolutionsParameterName = "EvaluatedSolutions";
39
40    public override bool CanChangeName {
41      get { return false; }
42    }
43
44    public override bool CanChangeDescription {
45      get { return false; }
46    }
47
48    #region parameter properties
49    public IFixedValueParameter<BoolValue> CheckExpressionsWithIntervalArithmeticParameter {
50      get { return (IFixedValueParameter<BoolValue>)Parameters[CheckExpressionsWithIntervalArithmeticParameterName]; }
51    }
52
53    public IFixedValueParameter<IntValue> EvaluatedSolutionsParameter {
54      get { return (IFixedValueParameter<IntValue>)Parameters[EvaluatedSolutionsParameterName]; }
55    }
56    #endregion
57
58    #region properties
59    public bool CheckExpressionsWithIntervalArithmetic {
60      get { return CheckExpressionsWithIntervalArithmeticParameter.Value.Value; }
61      set { CheckExpressionsWithIntervalArithmeticParameter.Value.Value = value; }
62    }
63
64    public int EvaluatedSolutions {
65      get { return EvaluatedSolutionsParameter.Value.Value; }
66      set { EvaluatedSolutionsParameter.Value.Value = value; }
67    }
68    #endregion
69
70    [StorableConstructor]
71    protected SymbolicDataAnalysisExpressionTreeInterpreter(StorableConstructorFlag _) : base(_) { }
72
73    protected SymbolicDataAnalysisExpressionTreeInterpreter(SymbolicDataAnalysisExpressionTreeInterpreter original,
74      Cloner cloner)
75      : base(original, cloner) { }
76
77    public override IDeepCloneable Clone(Cloner cloner) {
78      return new SymbolicDataAnalysisExpressionTreeInterpreter(this, cloner);
79    }
80
81    public SymbolicDataAnalysisExpressionTreeInterpreter()
82      : base("SymbolicDataAnalysisExpressionTreeInterpreter", "Interpreter for symbolic expression trees including automatically defined functions.") {
83      Parameters.Add(new FixedValueParameter<BoolValue>(CheckExpressionsWithIntervalArithmeticParameterName, "Switch that determines if the interpreter checks the validity of expressions with interval arithmetic before evaluating the expression.", new BoolValue(false)));
84      Parameters.Add(new FixedValueParameter<IntValue>(EvaluatedSolutionsParameterName, "A counter for the total number of solutions the interpreter has evaluated", new IntValue(0)));
85    }
86
87    protected SymbolicDataAnalysisExpressionTreeInterpreter(string name, string description)
88      : base(name, description) {
89      Parameters.Add(new FixedValueParameter<BoolValue>(CheckExpressionsWithIntervalArithmeticParameterName, "Switch that determines if the interpreter checks the validity of expressions with interval arithmetic before evaluating the expression.", new BoolValue(false)));
90      Parameters.Add(new FixedValueParameter<IntValue>(EvaluatedSolutionsParameterName, "A counter for the total number of solutions the interpreter has evaluated", new IntValue(0)));
91    }
92
93    [StorableHook(HookType.AfterDeserialization)]
94    private void AfterDeserialization() {
95      var evaluatedSolutions = new IntValue(0);
96      var checkExpressionsWithIntervalArithmetic = new BoolValue(false);
97      if (Parameters.ContainsKey(EvaluatedSolutionsParameterName)) {
98        var evaluatedSolutionsParameter = (IValueParameter<IntValue>)Parameters[EvaluatedSolutionsParameterName];
99        evaluatedSolutions = evaluatedSolutionsParameter.Value;
100        Parameters.Remove(EvaluatedSolutionsParameterName);
101      }
102      Parameters.Add(new FixedValueParameter<IntValue>(EvaluatedSolutionsParameterName, "A counter for the total number of solutions the interpreter has evaluated", evaluatedSolutions));
103      if (Parameters.ContainsKey(CheckExpressionsWithIntervalArithmeticParameterName)) {
104        var checkExpressionsWithIntervalArithmeticParameter = (IValueParameter<BoolValue>)Parameters[CheckExpressionsWithIntervalArithmeticParameterName];
105        Parameters.Remove(CheckExpressionsWithIntervalArithmeticParameterName);
106        checkExpressionsWithIntervalArithmetic = checkExpressionsWithIntervalArithmeticParameter.Value;
107      }
108      Parameters.Add(new FixedValueParameter<BoolValue>(CheckExpressionsWithIntervalArithmeticParameterName, CheckExpressionsWithIntervalArithmeticParameterDescription, checkExpressionsWithIntervalArithmetic));
109    }
110
111    #region IStatefulItem
112    public void InitializeState() {
113      EvaluatedSolutions = 0;
114    }
115
116    public void ClearState() { }
117    #endregion
118
119    private readonly object syncRoot = new object();
120    public IEnumerable<double> GetSymbolicExpressionTreeValues(ISymbolicExpressionTree tree, IDataset dataset,
121      IEnumerable<int> rows) {
122      if (CheckExpressionsWithIntervalArithmetic) {
123        throw new NotSupportedException("Interval arithmetic is not yet supported in the symbolic data analysis interpreter.");
124      }
125
126      lock (syncRoot) {
127        EvaluatedSolutions++; // increment the evaluated solutions counter
128      }
129      var state = PrepareInterpreterState(tree, dataset);
130
131      foreach (var rowEnum in rows) {
132        int row = rowEnum;
133        yield return Evaluate(dataset, ref row, state);
134        state.Reset();
135      }
136    }
137
138    private static InterpreterState PrepareInterpreterState(ISymbolicExpressionTree tree, IDataset dataset) {
139      Instruction[] code = SymbolicExpressionTreeCompiler.Compile(tree, OpCode.MapSymbolToOpCode);
140      int necessaryArgStackSize = 0;
141      foreach (Instruction instr in code) {
142        if (instr.opCode == OpCode.Variable) {
143          var variableTreeNode = (VariableTreeNode)instr.dynamicNode;
144          instr.data = dataset.GetReadOnlyDoubleValues(variableTreeNode.VariableName);
145        } else if (instr.opCode == OpCode.FactorVariable) {
146          var factorTreeNode = instr.dynamicNode as FactorVariableTreeNode;
147          instr.data = dataset.GetReadOnlyStringValues(factorTreeNode.VariableName);
148        } else if (instr.opCode == OpCode.BinaryFactorVariable) {
149          var factorTreeNode = instr.dynamicNode as BinaryFactorVariableTreeNode;
150          instr.data = dataset.GetReadOnlyStringValues(factorTreeNode.VariableName);
151        } else if (instr.opCode == OpCode.LagVariable) {
152          var laggedVariableTreeNode = (LaggedVariableTreeNode)instr.dynamicNode;
153          instr.data = dataset.GetReadOnlyDoubleValues(laggedVariableTreeNode.VariableName);
154        } else if (instr.opCode == OpCode.VariableCondition) {
155          var variableConditionTreeNode = (VariableConditionTreeNode)instr.dynamicNode;
156          instr.data = dataset.GetReadOnlyDoubleValues(variableConditionTreeNode.VariableName);
157        } else if (instr.opCode == OpCode.Call) {
158          necessaryArgStackSize += instr.nArguments + 1;
159        }
160      }
161      return new InterpreterState(code, necessaryArgStackSize);
162    }
163
164    public virtual double Evaluate(IDataset dataset, ref int row, InterpreterState state) {
165      Instruction currentInstr = state.NextInstruction();
166      switch (currentInstr.opCode) {
167        case OpCode.Add: {
168            double s = Evaluate(dataset, ref row, state);
169            for (int i = 1; i < currentInstr.nArguments; i++) {
170              s += Evaluate(dataset, ref row, state);
171            }
172            return s;
173          }
174        case OpCode.Sub: {
175            double s = Evaluate(dataset, ref row, state);
176            for (int i = 1; i < currentInstr.nArguments; i++) {
177              s -= Evaluate(dataset, ref row, state);
178            }
179            if (currentInstr.nArguments == 1) { s = -s; }
180            return s;
181          }
182        case OpCode.Mul: {
183            double p = Evaluate(dataset, ref row, state);
184            for (int i = 1; i < currentInstr.nArguments; i++) {
185              p *= Evaluate(dataset, ref row, state);
186            }
187            return p;
188          }
189        case OpCode.Div: {
190            double p = Evaluate(dataset, ref row, state);
191            for (int i = 1; i < currentInstr.nArguments; i++) {
192              p /= Evaluate(dataset, ref row, state);
193            }
194            if (currentInstr.nArguments == 1) { p = 1.0 / p; }
195            return p;
196          }
197        case OpCode.Average: {
198            double sum = Evaluate(dataset, ref row, state);
199            for (int i = 1; i < currentInstr.nArguments; i++) {
200              sum += Evaluate(dataset, ref row, state);
201            }
202            return sum / currentInstr.nArguments;
203          }
204        case OpCode.Absolute: {
205            return Math.Abs(Evaluate(dataset, ref row, state));
206          }
207        case OpCode.Tanh: {
208            return Math.Tanh(Evaluate(dataset, ref row, state));
209          }
210        case OpCode.Cos: {
211            return Math.Cos(Evaluate(dataset, ref row, state));
212          }
213        case OpCode.Sin: {
214            return Math.Sin(Evaluate(dataset, ref row, state));
215          }
216        case OpCode.Tan: {
217            return Math.Tan(Evaluate(dataset, ref row, state));
218          }
219        case OpCode.Square: {
220            return Math.Pow(Evaluate(dataset, ref row, state), 2);
221          }
222        case OpCode.Cube: {
223            return Math.Pow(Evaluate(dataset, ref row, state), 3);
224          }
225        case OpCode.Power: {
226            double x = Evaluate(dataset, ref row, state);
227            double y = Math.Round(Evaluate(dataset, ref row, state));
228            return Math.Pow(x, y);
229          }
230        case OpCode.SquareRoot: {
231            return Math.Sqrt(Evaluate(dataset, ref row, state));
232          }
233        case OpCode.CubeRoot: {
234            return Math.Pow(Evaluate(dataset, ref row, state), 1.0 / 3.0);
235          }
236        case OpCode.Root: {
237            double x = Evaluate(dataset, ref row, state);
238            double y = Math.Round(Evaluate(dataset, ref row, state));
239            return Math.Pow(x, 1 / y);
240          }
241        case OpCode.Exp: {
242            return Math.Exp(Evaluate(dataset, ref row, state));
243          }
244        case OpCode.Log: {
245            return Math.Log(Evaluate(dataset, ref row, state));
246          }
247        case OpCode.Gamma: {
248            var x = Evaluate(dataset, ref row, state);
249            if (double.IsNaN(x)) { return double.NaN; } else { return alglib.gammafunction(x); }
250          }
251        case OpCode.Psi: {
252            var x = Evaluate(dataset, ref row, state);
253            if (double.IsNaN(x)) return double.NaN;
254            else if (x <= 0 && (Math.Floor(x) - x).IsAlmost(0)) return double.NaN;
255            return alglib.psi(x);
256          }
257        case OpCode.Dawson: {
258            var x = Evaluate(dataset, ref row, state);
259            if (double.IsNaN(x)) { return double.NaN; }
260            return alglib.dawsonintegral(x);
261          }
262        case OpCode.ExponentialIntegralEi: {
263            var x = Evaluate(dataset, ref row, state);
264            if (double.IsNaN(x)) { return double.NaN; }
265            return alglib.exponentialintegralei(x);
266          }
267        case OpCode.SineIntegral: {
268            double si, ci;
269            var x = Evaluate(dataset, ref row, state);
270            if (double.IsNaN(x)) return double.NaN;
271            else {
272              alglib.sinecosineintegrals(x, out si, out ci);
273              return si;
274            }
275          }
276        case OpCode.CosineIntegral: {
277            double si, ci;
278            var x = Evaluate(dataset, ref row, state);
279            if (double.IsNaN(x)) return double.NaN;
280            else {
281              alglib.sinecosineintegrals(x, out si, out ci);
282              return ci;
283            }
284          }
285        case OpCode.HyperbolicSineIntegral: {
286            double shi, chi;
287            var x = Evaluate(dataset, ref row, state);
288            if (double.IsNaN(x)) return double.NaN;
289            else {
290              alglib.hyperbolicsinecosineintegrals(x, out shi, out chi);
291              return shi;
292            }
293          }
294        case OpCode.HyperbolicCosineIntegral: {
295            double shi, chi;
296            var x = Evaluate(dataset, ref row, state);
297            if (double.IsNaN(x)) return double.NaN;
298            else {
299              alglib.hyperbolicsinecosineintegrals(x, out shi, out chi);
300              return chi;
301            }
302          }
303        case OpCode.FresnelCosineIntegral: {
304            double c = 0, s = 0;
305            var x = Evaluate(dataset, ref row, state);
306            if (double.IsNaN(x)) return double.NaN;
307            else {
308              alglib.fresnelintegral(x, ref c, ref s);
309              return c;
310            }
311          }
312        case OpCode.FresnelSineIntegral: {
313            double c = 0, s = 0;
314            var x = Evaluate(dataset, ref row, state);
315            if (double.IsNaN(x)) return double.NaN;
316            else {
317              alglib.fresnelintegral(x, ref c, ref s);
318              return s;
319            }
320          }
321        case OpCode.AiryA: {
322            double ai, aip, bi, bip;
323            var x = Evaluate(dataset, ref row, state);
324            if (double.IsNaN(x)) return double.NaN;
325            else {
326              alglib.airy(x, out ai, out aip, out bi, out bip);
327              return ai;
328            }
329          }
330        case OpCode.AiryB: {
331            double ai, aip, bi, bip;
332            var x = Evaluate(dataset, ref row, state);
333            if (double.IsNaN(x)) return double.NaN;
334            else {
335              alglib.airy(x, out ai, out aip, out bi, out bip);
336              return bi;
337            }
338          }
339        case OpCode.Norm: {
340            var x = Evaluate(dataset, ref row, state);
341            if (double.IsNaN(x)) return double.NaN;
342            else return alglib.normaldistribution(x);
343          }
344        case OpCode.Erf: {
345            var x = Evaluate(dataset, ref row, state);
346            if (double.IsNaN(x)) return double.NaN;
347            else return alglib.errorfunction(x);
348          }
349        case OpCode.Bessel: {
350            var x = Evaluate(dataset, ref row, state);
351            if (double.IsNaN(x)) return double.NaN;
352            else return alglib.besseli0(x);
353          }
354
355        case OpCode.AnalyticQuotient: {
356            var x1 = Evaluate(dataset, ref row, state);
357            var x2 = Evaluate(dataset, ref row, state);
358            return x1 / Math.Pow(1 + x2 * x2, 0.5);
359          }
360        case OpCode.IfThenElse: {
361            double condition = Evaluate(dataset, ref row, state);
362            double result;
363            if (condition > 0.0) {
364              result = Evaluate(dataset, ref row, state); state.SkipInstructions();
365            } else {
366              state.SkipInstructions(); result = Evaluate(dataset, ref row, state);
367            }
368            return result;
369          }
370        case OpCode.AND: {
371            double result = Evaluate(dataset, ref row, state);
372            for (int i = 1; i < currentInstr.nArguments; i++) {
373              if (result > 0.0) result = Evaluate(dataset, ref row, state);
374              else {
375                state.SkipInstructions();
376              }
377            }
378            return result > 0.0 ? 1.0 : -1.0;
379          }
380        case OpCode.OR: {
381            double result = Evaluate(dataset, ref row, state);
382            for (int i = 1; i < currentInstr.nArguments; i++) {
383              if (result <= 0.0) result = Evaluate(dataset, ref row, state);
384              else {
385                state.SkipInstructions();
386              }
387            }
388            return result > 0.0 ? 1.0 : -1.0;
389          }
390        case OpCode.NOT: {
391            return Evaluate(dataset, ref row, state) > 0.0 ? -1.0 : 1.0;
392          }
393        case OpCode.XOR: {
394            //mkommend: XOR on multiple inputs is defined as true if the number of positive signals is odd
395            // this is equal to a consecutive execution of binary XOR operations.
396            int positiveSignals = 0;
397            for (int i = 0; i < currentInstr.nArguments; i++) {
398              if (Evaluate(dataset, ref row, state) > 0.0) { positiveSignals++; }
399            }
400            return positiveSignals % 2 != 0 ? 1.0 : -1.0;
401          }
402        case OpCode.GT: {
403            double x = Evaluate(dataset, ref row, state);
404            double y = Evaluate(dataset, ref row, state);
405            if (x > y) { return 1.0; } else { return -1.0; }
406          }
407        case OpCode.LT: {
408            double x = Evaluate(dataset, ref row, state);
409            double y = Evaluate(dataset, ref row, state);
410            if (x < y) { return 1.0; } else { return -1.0; }
411          }
412        case OpCode.TimeLag: {
413            var timeLagTreeNode = (LaggedTreeNode)currentInstr.dynamicNode;
414            row += timeLagTreeNode.Lag;
415            double result = Evaluate(dataset, ref row, state);
416            row -= timeLagTreeNode.Lag;
417            return result;
418          }
419        case OpCode.Integral: {
420            int savedPc = state.ProgramCounter;
421            var timeLagTreeNode = (LaggedTreeNode)currentInstr.dynamicNode;
422            double sum = 0.0;
423            for (int i = 0; i < Math.Abs(timeLagTreeNode.Lag); i++) {
424              row += Math.Sign(timeLagTreeNode.Lag);
425              sum += Evaluate(dataset, ref row, state);
426              state.ProgramCounter = savedPc;
427            }
428            row -= timeLagTreeNode.Lag;
429            sum += Evaluate(dataset, ref row, state);
430            return sum;
431          }
432
433        //mkommend: derivate calculation taken from:
434        //http://www.holoborodko.com/pavel/numerical-methods/numerical-derivative/smooth-low-noise-differentiators/
435        //one sided smooth differentiatior, N = 4
436        // y' = 1/8h (f_i + 2f_i-1, -2 f_i-3 - f_i-4)
437        case OpCode.Derivative: {
438            int savedPc = state.ProgramCounter;
439            double f_0 = Evaluate(dataset, ref row, state); row--;
440            state.ProgramCounter = savedPc;
441            double f_1 = Evaluate(dataset, ref row, state); row -= 2;
442            state.ProgramCounter = savedPc;
443            double f_3 = Evaluate(dataset, ref row, state); row--;
444            state.ProgramCounter = savedPc;
445            double f_4 = Evaluate(dataset, ref row, state);
446            row += 4;
447
448            return (f_0 + 2 * f_1 - 2 * f_3 - f_4) / 8; // h = 1
449          }
450        case OpCode.Call: {
451            // evaluate sub-trees
452            double[] argValues = new double[currentInstr.nArguments];
453            for (int i = 0; i < currentInstr.nArguments; i++) {
454              argValues[i] = Evaluate(dataset, ref row, state);
455            }
456            // push on argument values on stack
457            state.CreateStackFrame(argValues);
458
459            // save the pc
460            int savedPc = state.ProgramCounter;
461            // set pc to start of function 
462            state.ProgramCounter = (ushort)currentInstr.data;
463            // evaluate the function
464            double v = Evaluate(dataset, ref row, state);
465
466            // delete the stack frame
467            state.RemoveStackFrame();
468
469            // restore the pc => evaluation will continue at point after my subtrees 
470            state.ProgramCounter = savedPc;
471            return v;
472          }
473        case OpCode.Arg: {
474            return state.GetStackFrameValue((ushort)currentInstr.data);
475          }
476        case OpCode.Variable: {
477            if (row < 0 || row >= dataset.Rows) return double.NaN;
478            var variableTreeNode = (VariableTreeNode)currentInstr.dynamicNode;
479            return ((IList<double>)currentInstr.data)[row] * variableTreeNode.Weight;
480          }
481        case OpCode.BinaryFactorVariable: {
482            if (row < 0 || row >= dataset.Rows) return double.NaN;
483            var factorVarTreeNode = currentInstr.dynamicNode as BinaryFactorVariableTreeNode;
484            return ((IList<string>)currentInstr.data)[row] == factorVarTreeNode.VariableValue ? factorVarTreeNode.Weight : 0;
485          }
486        case OpCode.FactorVariable: {
487            if (row < 0 || row >= dataset.Rows) return double.NaN;
488            var factorVarTreeNode = currentInstr.dynamicNode as FactorVariableTreeNode;
489            return factorVarTreeNode.GetValue(((IList<string>)currentInstr.data)[row]);
490          }
491        case OpCode.LagVariable: {
492            var laggedVariableTreeNode = (LaggedVariableTreeNode)currentInstr.dynamicNode;
493            int actualRow = row + laggedVariableTreeNode.Lag;
494            if (actualRow < 0 || actualRow >= dataset.Rows) { return double.NaN; }
495            return ((IList<double>)currentInstr.data)[actualRow] * laggedVariableTreeNode.Weight;
496          }
497        case OpCode.Constant: {
498            var constTreeNode = (ConstantTreeNode)currentInstr.dynamicNode;
499            return constTreeNode.Value;
500          }
501
502        //mkommend: this symbol uses the logistic function f(x) = 1 / (1 + e^(-alpha * x) )
503        //to determine the relative amounts of the true and false branch see http://en.wikipedia.org/wiki/Logistic_function
504        case OpCode.VariableCondition: {
505            if (row < 0 || row >= dataset.Rows) return double.NaN;
506            var variableConditionTreeNode = (VariableConditionTreeNode)currentInstr.dynamicNode;
507            if (!variableConditionTreeNode.Symbol.IgnoreSlope) {
508              double variableValue = ((IList<double>)currentInstr.data)[row];
509              double x = variableValue - variableConditionTreeNode.Threshold;
510              double p = 1 / (1 + Math.Exp(-variableConditionTreeNode.Slope * x));
511
512              double trueBranch = Evaluate(dataset, ref row, state);
513              double falseBranch = Evaluate(dataset, ref row, state);
514
515              return trueBranch * p + falseBranch * (1 - p);
516            } else {
517              // strict threshold
518              double variableValue = ((IList<double>)currentInstr.data)[row];
519              if (variableValue <= variableConditionTreeNode.Threshold) {
520                var left = Evaluate(dataset, ref row, state);
521                state.SkipInstructions();
522                return left;
523              } else {
524                state.SkipInstructions();
525                return Evaluate(dataset, ref row, state);
526              }
527            }
528          }
529        default:
530          throw new NotSupportedException();
531      }
532    }
533  }
534}
Note: See TracBrowser for help on using the repository browser.