1 | #region License Information
|
---|
2 |
|
---|
3 | /* HeuristicLab
|
---|
4 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
5 | *
|
---|
6 | * This file is part of HeuristicLab.
|
---|
7 | *
|
---|
8 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
9 | * it under the terms of the GNU General Public License as published by
|
---|
10 | * the Free Software Foundation, either version 3 of the License, or
|
---|
11 | * (at your option) any later version.
|
---|
12 | *
|
---|
13 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
16 | * GNU General Public License for more details.
|
---|
17 | *
|
---|
18 | * You should have received a copy of the GNU General Public License
|
---|
19 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
20 | */
|
---|
21 |
|
---|
22 | #endregion
|
---|
23 |
|
---|
24 | using System;
|
---|
25 | using System.Linq;
|
---|
26 | using HeuristicLab.Common;
|
---|
27 | using HeuristicLab.Core;
|
---|
28 | using HeuristicLab.Data;
|
---|
29 | using HeuristicLab.Optimization;
|
---|
30 | using HEAL.Attic;
|
---|
31 |
|
---|
32 | namespace HeuristicLab.Encodings.SymbolicExpressionTreeEncoding {
|
---|
33 | [StorableType("A1B9F4C8-5E29-493C-A483-2AC68453BC63")]
|
---|
34 | public abstract class SymbolicExpressionTreeProblem : SingleObjectiveBasicProblem<SymbolicExpressionTreeEncoding> {
|
---|
35 |
|
---|
36 | // persistence
|
---|
37 | [StorableConstructor]
|
---|
38 | protected SymbolicExpressionTreeProblem(StorableConstructorFlag _) : base(_) { }
|
---|
39 | [StorableHook(HookType.AfterDeserialization)]
|
---|
40 | private void AfterDeserialization() { }
|
---|
41 |
|
---|
42 |
|
---|
43 | // cloning
|
---|
44 | protected SymbolicExpressionTreeProblem(SymbolicExpressionTreeProblem original, Cloner cloner)
|
---|
45 | : base(original, cloner) {
|
---|
46 | }
|
---|
47 |
|
---|
48 | protected SymbolicExpressionTreeProblem() : base() { }
|
---|
49 |
|
---|
50 | public virtual bool IsBetter(double quality, double bestQuality) {
|
---|
51 | return (Maximization && quality > bestQuality || !Maximization && quality < bestQuality);
|
---|
52 | }
|
---|
53 |
|
---|
54 | public abstract double Evaluate(ISymbolicExpressionTree tree, IRandom random);
|
---|
55 | public sealed override double Evaluate(Individual individual, IRandom random) {
|
---|
56 | return Evaluate(individual.SymbolicExpressionTree(), random);
|
---|
57 | }
|
---|
58 |
|
---|
59 | public virtual void Analyze(ISymbolicExpressionTree[] trees, double[] qualities, ResultCollection results,
|
---|
60 | IRandom random) {
|
---|
61 | if (!results.ContainsKey("Best Solution Quality")) {
|
---|
62 | results.Add(new Result("Best Solution Quality", typeof(DoubleValue)));
|
---|
63 | }
|
---|
64 | if (!results.ContainsKey("Best Solution")) {
|
---|
65 | results.Add(new Result("Best Solution", typeof(ISymbolicExpressionTree)));
|
---|
66 | }
|
---|
67 |
|
---|
68 | var bestQuality = Maximization ? qualities.Max() : qualities.Min();
|
---|
69 |
|
---|
70 | if (results["Best Solution Quality"].Value == null ||
|
---|
71 | IsBetter(bestQuality, ((DoubleValue)results["Best Solution Quality"].Value).Value)) {
|
---|
72 | var bestIdx = Array.IndexOf(qualities, bestQuality);
|
---|
73 | var bestClone = (IItem)trees[bestIdx].Clone();
|
---|
74 | results["Best Solution"].Value = bestClone;
|
---|
75 | results["Best Solution Quality"].Value = new DoubleValue(bestQuality);
|
---|
76 | }
|
---|
77 | }
|
---|
78 |
|
---|
79 | public sealed override void Analyze(Individual[] individuals, double[] qualities, ResultCollection results, IRandom random) {
|
---|
80 | Analyze(individuals.Select(ind => ind.SymbolicExpressionTree()).ToArray(), qualities, results, random);
|
---|
81 | }
|
---|
82 | }
|
---|
83 | }
|
---|