[17134] | 1 | using HEAL.Attic;
|
---|
| 2 | using HeuristicLab.Algorithms.DataAnalysis;
|
---|
| 3 | using HeuristicLab.Common;
|
---|
| 4 | using HeuristicLab.Core;
|
---|
| 5 | using HeuristicLab.Data;
|
---|
| 6 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 7 | using HeuristicLab.Optimization;
|
---|
| 8 | using HeuristicLab.Parameters;
|
---|
| 9 | using HeuristicLab.Problems.DataAnalysis;
|
---|
| 10 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
| 11 | using HeuristicLab.Random;
|
---|
| 12 | using System;
|
---|
| 13 | using System.Collections.Generic;
|
---|
| 14 | using System.IO;
|
---|
| 15 | using System.Linq;
|
---|
| 16 | using CancellationToken = System.Threading.CancellationToken;
|
---|
| 17 | using ExecutionContext = HeuristicLab.Core.ExecutionContext;
|
---|
| 18 |
|
---|
| 19 | namespace HeuristicLab.Algorithms.EvolvmentModelsOfModels {
|
---|
| 20 | [Item("ModelSetPreparation", "Model Set preparation algorithm.")]
|
---|
| 21 | [Creatable(CreatableAttribute.Categories.Algorithms, Priority = 125)]
|
---|
| 22 | [StorableType("3C5DF308-DB79-4ACD-894B-F795F081726B")]
|
---|
| 23 | public class ModelSetPreparation : FixedDataAnalysisAlgorithm<ISymbolicDataAnalysisSingleObjectiveProblem> {
|
---|
| 24 | #region data members
|
---|
| 25 | [Storable]
|
---|
| 26 | protected ExecutionContext executionContext;
|
---|
| 27 | [Storable]
|
---|
| 28 | protected ExecutionState previousExecutionState;
|
---|
| 29 | [Storable]
|
---|
| 30 | protected IEnumerable<ISymbolicExpressionTree> trees;
|
---|
| 31 | [Storable]
|
---|
| 32 | protected ExecutionState currentExecutionState;
|
---|
| 33 | #endregion
|
---|
| 34 |
|
---|
| 35 | #region parameters
|
---|
| 36 | private const string SeedParameterName = "Seed";
|
---|
| 37 | private const string SetSeedRandomlyParameterName = "SetSeedRandomly";
|
---|
| 38 | private const string RandomParameterName = "Random";
|
---|
| 39 | private const string InputFileParameterName = "InputFile";
|
---|
| 40 | private const string AlgorithmImplementationTypeParameterName = "AlgorithmImplementationType";
|
---|
| 41 | private const string GoalParameterName = "Goal";
|
---|
| 42 | private const string DistanceTypeParameterName = "DistanceType";
|
---|
| 43 | private const string MapParameterName = "Map";
|
---|
| 44 |
|
---|
| 45 | public IFixedValueParameter<IntValue> SeedParameter {
|
---|
| 46 | get { return (IFixedValueParameter<IntValue>)Parameters[SeedParameterName]; }
|
---|
| 47 | }
|
---|
| 48 | public IConstrainedValueParameter<StringValue> AlgorithmImplementationTypeParameter {
|
---|
| 49 | get { return (IConstrainedValueParameter<StringValue>)Parameters[AlgorithmImplementationTypeParameterName]; }
|
---|
| 50 | }
|
---|
| 51 | public IConstrainedValueParameter<StringValue> GoalParameter {
|
---|
| 52 | get { return (IConstrainedValueParameter<StringValue>)Parameters[GoalParameterName]; }
|
---|
| 53 | }
|
---|
| 54 | public IConstrainedValueParameter<StringValue> DistanceTypeParameter {
|
---|
| 55 | get { return (IConstrainedValueParameter<StringValue>)Parameters[DistanceTypeParameterName]; }
|
---|
| 56 | }
|
---|
| 57 | public IConstrainedValueParameter<EMMMapBase<ISymbolicExpressionTree>> MapParameter {
|
---|
| 58 | get { return (IConstrainedValueParameter<EMMMapBase<ISymbolicExpressionTree>>)Parameters[MapParameterName]; }
|
---|
| 59 | }
|
---|
| 60 | public IFixedValueParameter<StringValue> InputFileParameter {
|
---|
| 61 | get { return (IFixedValueParameter<StringValue>)Parameters[InputFileParameterName]; }
|
---|
| 62 | }
|
---|
| 63 | public IFixedValueParameter<BoolValue> SetSeedRandomlyParameter {
|
---|
| 64 | get { return (IFixedValueParameter<BoolValue>)Parameters[SetSeedRandomlyParameterName]; }
|
---|
| 65 | }
|
---|
| 66 | public IValueParameter<IRandom> RandomParameter {
|
---|
| 67 | get { return (IValueParameter<IRandom>)Parameters[RandomParameterName]; }
|
---|
| 68 | }
|
---|
| 69 | #endregion
|
---|
| 70 |
|
---|
| 71 | #region parameter properties
|
---|
| 72 | public int Seed {
|
---|
| 73 | get { return SeedParameter.Value.Value; }
|
---|
| 74 | set { SeedParameter.Value.Value = value; }
|
---|
| 75 | }
|
---|
| 76 | public StringValue AlgorithmImplemetationType {
|
---|
| 77 | get { return AlgorithmImplementationTypeParameter.Value; }
|
---|
| 78 | set { AlgorithmImplementationTypeParameter.Value.Value = value.Value; }
|
---|
| 79 | }
|
---|
| 80 | public StringValue Goal {
|
---|
| 81 | get { return GoalParameter.Value; }
|
---|
| 82 | set { GoalParameter.Value.Value = value.Value; }
|
---|
| 83 | }
|
---|
| 84 | public StringValue DistanceType {
|
---|
| 85 | get { return DistanceTypeParameter.Value; }
|
---|
| 86 | set { DistanceTypeParameter.Value.Value = value.Value; }
|
---|
| 87 | }
|
---|
| 88 | public EMMMapBase<ISymbolicExpressionTree> Map {
|
---|
| 89 | get { return MapParameter.Value; }
|
---|
| 90 | set { MapParameter.Value = value; }
|
---|
| 91 | }
|
---|
| 92 | public StringValue InputFile {
|
---|
| 93 | get { return InputFileParameter.Value; }
|
---|
| 94 | set { InputFileParameter.Value.Value = value.Value; }
|
---|
| 95 | }
|
---|
| 96 | public bool SetSeedRandomly {
|
---|
| 97 | get { return SetSeedRandomlyParameter.Value.Value; }
|
---|
| 98 | set { SetSeedRandomlyParameter.Value.Value = value; }
|
---|
| 99 | }
|
---|
| 100 | #endregion
|
---|
| 101 |
|
---|
| 102 | #region constructors
|
---|
| 103 | public ModelSetPreparation() {
|
---|
| 104 |
|
---|
| 105 | Parameters.Add(new FixedValueParameter<IntValue>(SeedParameterName, "The random seed used to initialize the new pseudo random number generator.", new IntValue(0)));
|
---|
| 106 | Parameters.Add(new FixedValueParameter<StringValue>(InputFileParameterName, "The file with set of models that will be.", new StringValue("input.txt")));
|
---|
| 107 | Parameters.Add(new ConstrainedValueParameter<StringValue>(AlgorithmImplementationTypeParameterName, "The Type of possible algorithm implementation, choose one: OnlyMap, Full, Read."));
|
---|
| 108 | Parameters.Add(new ConstrainedValueParameter<StringValue>(GoalParameterName, "The goal of algorithm implementation, choose one: ToSee, ToWork, Full."));
|
---|
| 109 | Parameters.Add(new ConstrainedValueParameter<StringValue>(DistanceTypeParameterName, "The Type of possible distance calculator for case of only distance calculation."));
|
---|
| 110 | Parameters.Add(new ConstrainedValueParameter<EMMMapBase<ISymbolicExpressionTree>>(MapParameterName, "The type of map creation algorithm. Use one from: IslandMap, NetworkMap."));
|
---|
| 111 | Parameters.Add(new FixedValueParameter<BoolValue>(SetSeedRandomlyParameterName, "True if the random seed should be set to a random value, otherwise false.", new BoolValue(true)));
|
---|
| 112 |
|
---|
| 113 | Parameters.Add(new ValueParameter<IRandom>(RandomParameterName, new MersenneTwister()));
|
---|
| 114 |
|
---|
| 115 | //begin hack ...
|
---|
| 116 | InputFile.ValueChanged += InputFile_ValueChanged;
|
---|
| 117 | InfixExpressionParser parser = new InfixExpressionParser();
|
---|
| 118 | trees = File.ReadAllLines(InputFileParameter.Value.Value).Select(parser.Parse).ToArray();
|
---|
| 119 | // end hack
|
---|
| 120 |
|
---|
| 121 | ProblemChanged += ModelSetPreporation_ProblemChanged;
|
---|
| 122 | MapParameterUpdate();
|
---|
| 123 |
|
---|
| 124 | }
|
---|
| 125 |
|
---|
| 126 | // also hack !!!!!!!!!!!!!!!!!!!!!!!!!
|
---|
| 127 | private void InputFile_ValueChanged(object sender, EventArgs e) {
|
---|
| 128 | InfixExpressionParser parser = new InfixExpressionParser();
|
---|
| 129 | trees = File.ReadAllLines(InputFileParameter.Value.Value).Select(parser.Parse);
|
---|
| 130 | }
|
---|
| 131 | // remove again !!!!!!!!!!!!!!!!!!!!!!
|
---|
| 132 |
|
---|
| 133 | private void ModelSetPreporation_ProblemChanged(object sender, EventArgs e) {
|
---|
| 134 | if (Problem != null) {
|
---|
| 135 | Problem.SymbolicExpressionTreeInterpreter = new SymbolicDataAnalysisExpressionTreeBatchInterpreter();
|
---|
| 136 | }
|
---|
| 137 | }
|
---|
| 138 | protected void MapParameterUpdate() {
|
---|
| 139 |
|
---|
| 140 | var mapTypes = new EMMMapBase<ISymbolicExpressionTree>[]
|
---|
| 141 | {
|
---|
| 142 | new EMMZeroMap (),
|
---|
| 143 | new EMMIslandMap(),
|
---|
| 144 | new EMMNetworkMap(),
|
---|
| 145 | new EMMDisatanceMap(),
|
---|
| 146 | new EMMRankMap(),
|
---|
| 147 | new EMMSucsessMap ()
|
---|
| 148 | };
|
---|
| 149 | foreach (var t in mapTypes) {
|
---|
| 150 | MapParameter.ValidValues.Add(t);
|
---|
| 151 | }
|
---|
| 152 | var algorithmType = new StringValue[]
|
---|
| 153 | {
|
---|
| 154 | new StringValue ("DistanceCalculation"),
|
---|
| 155 | new StringValue ("OnlyMap"),
|
---|
| 156 | new StringValue ("Statistic")
|
---|
| 157 | };
|
---|
| 158 | foreach (var t in algorithmType) {
|
---|
| 159 | AlgorithmImplementationTypeParameter.ValidValues.Add(t);
|
---|
| 160 | }
|
---|
| 161 | var goal = new StringValue[]
|
---|
| 162 | {
|
---|
| 163 | new StringValue ("ToWork"),
|
---|
| 164 | new StringValue ("ToSee"),
|
---|
| 165 | new StringValue ("Full")
|
---|
| 166 | };
|
---|
| 167 | foreach (var t in goal) {
|
---|
| 168 | GoalParameter.ValidValues.Add(t);
|
---|
| 169 | }
|
---|
| 170 | var distanceType = new StringValue[]
|
---|
| 171 | {
|
---|
| 172 | new StringValue("MSE"),
|
---|
| 173 | new StringValue("PearsonsRSquared"),
|
---|
| 174 | new StringValue ("Covariance"),
|
---|
| 175 | new StringValue ("MaxAbsoluteError"),
|
---|
| 176 | new StringValue ("MeanAbsoluteError"),
|
---|
| 177 | new StringValue ("Symbolic")
|
---|
| 178 | };
|
---|
| 179 | foreach (var t in distanceType) {
|
---|
| 180 | DistanceTypeParameter.ValidValues.Add(t);
|
---|
| 181 | }
|
---|
| 182 | }
|
---|
| 183 |
|
---|
| 184 | protected ModelSetPreparation(ModelSetPreparation original, Cloner cloner) : base(original, cloner) {
|
---|
| 185 |
|
---|
| 186 | previousExecutionState = original.previousExecutionState;
|
---|
| 187 | if (original.executionContext != null) {
|
---|
| 188 | executionContext = cloner.Clone(original.executionContext);
|
---|
| 189 | }
|
---|
| 190 | // hack
|
---|
| 191 | trees = original.trees.Select(x => cloner.Clone(x)).ToArray();
|
---|
| 192 | }
|
---|
| 193 |
|
---|
| 194 | [StorableConstructor]
|
---|
| 195 | protected ModelSetPreparation(StorableConstructorFlag _) : base(_) { }
|
---|
| 196 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 197 | return new ModelSetPreparation(this, cloner);
|
---|
| 198 | }
|
---|
| 199 | #endregion
|
---|
| 200 |
|
---|
| 201 | #region technical stuff
|
---|
| 202 | public override void Prepare() {
|
---|
| 203 | base.Prepare();
|
---|
| 204 | }
|
---|
| 205 |
|
---|
| 206 | protected override void Initialize(CancellationToken cancellationToken) {
|
---|
| 207 | base.Initialize(cancellationToken);
|
---|
| 208 | }
|
---|
| 209 |
|
---|
| 210 | public override bool SupportsPause => true;
|
---|
| 211 |
|
---|
| 212 | // implements random number generation from https://en.wikipedia.org/wiki/Dirichlet_distribution#Random_number_generation
|
---|
| 213 |
|
---|
| 214 | #region operator wiring and events
|
---|
| 215 | private void ParameterizeStochasticOperator(IOperator op) {
|
---|
| 216 | IStochasticOperator stochasticOp = op as IStochasticOperator;
|
---|
| 217 | if (stochasticOp != null) {
|
---|
| 218 | stochasticOp.RandomParameter.ActualName = "Random";
|
---|
| 219 | stochasticOp.RandomParameter.Hidden = true;
|
---|
| 220 | }
|
---|
| 221 | }
|
---|
| 222 | protected void ExecuteOperation(ExecutionContext executionContext, CancellationToken cancellationToken, IOperation operation) {
|
---|
| 223 | Stack<IOperation> executionStack = new Stack<IOperation>();
|
---|
| 224 | executionStack.Push(operation);
|
---|
| 225 | while (executionStack.Count > 0) {
|
---|
| 226 | cancellationToken.ThrowIfCancellationRequested();
|
---|
| 227 | IOperation next = executionStack.Pop();
|
---|
| 228 | if (next is OperationCollection coll) {
|
---|
| 229 | for (int i = coll.Count - 1; i >= 0; i--)
|
---|
| 230 | if (coll[i] != null) executionStack.Push(coll[i]);
|
---|
| 231 | } else if (next is IAtomicOperation op) {
|
---|
| 232 | next = op.Operator.Execute((IExecutionContext)op, cancellationToken);
|
---|
| 233 | if (next != null) executionStack.Push(next);
|
---|
| 234 | }
|
---|
| 235 | }
|
---|
| 236 | }
|
---|
| 237 |
|
---|
| 238 | protected override void OnProblemChanged() {
|
---|
| 239 | base.OnProblemChanged();
|
---|
| 240 | }
|
---|
| 241 |
|
---|
| 242 | protected override void OnExecutionStateChanged() {
|
---|
| 243 | previousExecutionState = currentExecutionState;
|
---|
| 244 | currentExecutionState = ExecutionState;
|
---|
| 245 | base.OnExecutionStateChanged();
|
---|
| 246 | }
|
---|
| 247 |
|
---|
| 248 | protected override void OnStopped() {
|
---|
| 249 | if (executionContext != null) {
|
---|
| 250 | if (executionContext.Scope != null) {
|
---|
| 251 | if (executionContext.Scope.SubScopes != null) {
|
---|
| 252 | executionContext.Scope.SubScopes.Clear();
|
---|
| 253 | }
|
---|
| 254 | }
|
---|
| 255 | }
|
---|
| 256 | base.OnStopped();
|
---|
| 257 | }
|
---|
| 258 | #endregion
|
---|
| 259 | #endregion
|
---|
| 260 |
|
---|
| 261 | #region algorithm implementation
|
---|
| 262 | protected override void Run(CancellationToken cancellationToken) {
|
---|
| 263 | Map.DistanceParametr = DistanceType.Value;
|
---|
| 264 | //distance calculation or reading that should be done in any cases
|
---|
| 265 | string fileNameForWatch = "DistanceMatrix_Watch" + DistanceType + ".txt";
|
---|
| 266 | string fileName = "DistanceMatrix_" + DistanceType + ".txt";
|
---|
| 267 | double[,] totalDistance;
|
---|
| 268 | if (AlgorithmImplemetationType.Value == "DistanceCalculation") {
|
---|
| 269 | totalDistance = TotalDistanceMatrixCalculation(RandomParameter.Value, Problem, trees.ToList(), DistanceType.Value);
|
---|
| 270 | if (Goal.Value != "ToWork") {
|
---|
| 271 | FileComuncations.DoubleMatrixPrint(fileNameForWatch, totalDistance, trees.Count());
|
---|
| 272 | }
|
---|
| 273 | if (Goal.Value != "ToSee") {
|
---|
| 274 | FileComuncations.DoubleMatrixSerialize(fileName, totalDistance);
|
---|
| 275 | }
|
---|
| 276 | } else {
|
---|
| 277 | totalDistance = FileComuncations.DoubleMatrixDeserialize(fileName);
|
---|
| 278 | // totalDistance = FileComuncations.DoubleMatrixFromFileRead(fileName, trees.Count());
|
---|
| 279 | }
|
---|
| 280 |
|
---|
| 281 | if (AlgorithmImplemetationType.Value == "Statistic") {
|
---|
| 282 | var statistic = new int[trees.Count(), trees.Count()];
|
---|
| 283 | for (int i = 0; i < trees.Count(); i++) {
|
---|
| 284 | for (int j = 0; j < trees.Count(); j++)
|
---|
| 285 | statistic[i, j] = 0;
|
---|
| 286 | }
|
---|
| 287 | var maps = new List<List<List<int>>>();
|
---|
| 288 | int repetitionNumber = 10;
|
---|
| 289 | Map.MapCreationPrepare(trees);
|
---|
| 290 | for (int i = 0; i < repetitionNumber; i++) {
|
---|
| 291 | Map.CreateMap(RandomParameter.Value, totalDistance);
|
---|
| 292 | maps.Add(Map.Map);
|
---|
| 293 | CheckClusters(statistic);
|
---|
| 294 | Map.Map.Clear();
|
---|
| 295 | }
|
---|
| 296 | } else { // Simple map creation case
|
---|
| 297 | Map.MapCreationPrepare(trees);
|
---|
| 298 | Map.CreateMap(RandomParameter.Value, totalDistance);
|
---|
| 299 | Map.WriteMapToTxtFile(RandomParameter.Value);// This should be deactivated in case of using HIVE. HIVE can not work with it.
|
---|
| 300 | }
|
---|
| 301 | }
|
---|
| 302 | protected void CheckClusters(int[,] info) {
|
---|
| 303 | // ToDo: It should be realized for statistics collection
|
---|
| 304 | }
|
---|
| 305 | #region distance manipulation
|
---|
| 306 |
|
---|
| 307 | public static double[,] DistanceMatrixCalculation(List<ISymbolicExpressionTree> trees, string distanceType, ISymbolicDataAnalysisSingleObjectiveProblem Problem) {
|
---|
| 308 | var problemData = (IRegressionProblemData)Problem.ProblemData;
|
---|
| 309 | var dataset = problemData.Dataset;
|
---|
| 310 | var rows = problemData.TrainingIndices;
|
---|
| 311 | var interpreter = Problem.SymbolicExpressionTreeInterpreter;
|
---|
| 312 | string[] toWrite = new string[trees.Count()];
|
---|
| 313 | int i = 0;
|
---|
| 314 | var treeValues = new List<List<double>>();
|
---|
| 315 | if (distanceType != "Symbolic") {
|
---|
| 316 | foreach (var tree in trees) {
|
---|
| 317 | treeValues.Add(interpreter.GetSymbolicExpressionTreeValues(tree, dataset, rows).ToList());
|
---|
| 318 | }
|
---|
| 319 | }
|
---|
| 320 | double[,] distances = new double[trees.Count, trees.Count];
|
---|
| 321 | OnlineCalculatorError err;
|
---|
| 322 | switch (distanceType) {
|
---|
| 323 | case "MSE":
|
---|
| 324 | for (i = 0; i < trees.Count - 1; i++) {
|
---|
| 325 | for (int j = i + 1; j < trees.Count; j++) {
|
---|
| 326 | distances[j, i] = distances[i, j] = OnlineNormalizedMeanSquaredErrorCalculator.Calculate(treeValues[i], treeValues[j], out err); ;
|
---|
| 327 | }
|
---|
| 328 | }
|
---|
| 329 | break;
|
---|
| 330 | case "PearsonsRSquared":
|
---|
| 331 | for (i = 0; i < trees.Count - 1; i++) {
|
---|
| 332 | for (int j = i + 1; j < trees.Count; j++) {
|
---|
| 333 | distances[j, i] = distances[i, j] = OnlinePearsonsRCalculator.Calculate(treeValues[i], treeValues[j], out err); ;
|
---|
| 334 | }
|
---|
| 335 | }
|
---|
| 336 | break;
|
---|
| 337 | case "Covariance":
|
---|
| 338 | for (i = 0; i < trees.Count - 1; i++) {
|
---|
| 339 | for (int j = i + 1; j < trees.Count; j++) {
|
---|
| 340 | distances[j, i] = distances[i, j] = OnlineCovarianceCalculator.Calculate(treeValues[i], treeValues[j], out err); ;
|
---|
| 341 | }
|
---|
| 342 | }
|
---|
| 343 | break;
|
---|
| 344 | case "MaxAbsoluteError":
|
---|
| 345 | for (i = 0; i < trees.Count - 1; i++) {
|
---|
| 346 | for (int j = i + 1; j < trees.Count; j++) {
|
---|
| 347 | distances[j, i] = distances[i, j] = OnlineMaxAbsoluteErrorCalculator.Calculate(treeValues[i], treeValues[j], out err); ;
|
---|
| 348 | }
|
---|
| 349 | }
|
---|
| 350 | break;
|
---|
| 351 | case "MeanAbsoluteError":
|
---|
| 352 | for (i = 0; i < trees.Count - 1; i++) {
|
---|
| 353 | for (int j = i + 1; j < trees.Count; j++) {
|
---|
| 354 | distances[j, i] = distances[i, j] = OnlineMeanAbsoluteErrorCalculator.Calculate(treeValues[i], treeValues[j], out err); ;
|
---|
| 355 | }
|
---|
| 356 | }
|
---|
| 357 | break;
|
---|
| 358 | case "Symbolic":
|
---|
| 359 | distances = SymbolicExpressionTreeHash.ComputeSimilarityMatrix(trees, simplify: false, strict: true);
|
---|
| 360 | for (i = 0; i < trees.Count - 1; i++) {
|
---|
| 361 | for (int j = i + 1; j < trees.Count; j++) {
|
---|
| 362 | distances[j, i] = distances[i, j] = 1 - distances[i, j];
|
---|
| 363 | }
|
---|
| 364 | }
|
---|
| 365 | break;
|
---|
| 366 | }
|
---|
| 367 |
|
---|
| 368 | return distances;
|
---|
| 369 | }
|
---|
| 370 | public static double[,] CalculateDistances(List<ISymbolicExpressionTree> treesSet) {
|
---|
| 371 | double[,] distances;
|
---|
| 372 | distances = SymbolicExpressionTreeHash.ComputeSimilarityMatrix(treesSet, simplify: false, strict: true);
|
---|
| 373 | for (int i = 0; i < treesSet.Count - 1; i++) {
|
---|
| 374 | for (int j = i + 1; j < treesSet.Count; j++) {
|
---|
| 375 | distances[j, i] = distances[i, j] = 1 - distances[i, j];
|
---|
| 376 | }
|
---|
| 377 | }
|
---|
| 378 | return distances;
|
---|
| 379 | }
|
---|
| 380 | public static double[,] TotalDistanceMatrixCalculation(IRandom random, ISymbolicDataAnalysisSingleObjectiveProblem problem, List<ISymbolicExpressionTree> treesSet, string distanceType) {
|
---|
| 381 | var setSize = treesSet.Count();
|
---|
| 382 | var totalDistance = new double[setSize, setSize];
|
---|
| 383 | var treeSetTemp = new List<ISymbolicExpressionTree>();
|
---|
| 384 | foreach (var tree in treesSet) {
|
---|
| 385 | treeSetTemp.Add((ISymbolicExpressionTree)tree.Clone());
|
---|
| 386 | }
|
---|
| 387 | if (distanceType != "Symbolic") {
|
---|
| 388 |
|
---|
| 389 | int repitNumber = 10;
|
---|
| 390 | totalDistance = new double[setSize, setSize];
|
---|
| 391 | for (int i = 0; i < setSize; i++) {
|
---|
| 392 | for (int j = 0; j < setSize; j++) {
|
---|
| 393 | totalDistance[i, j] = 0;
|
---|
| 394 | }
|
---|
| 395 | }
|
---|
| 396 | for (int i = 0; i < repitNumber; i++) {
|
---|
| 397 | foreach (var tree in treeSetTemp) {
|
---|
| 398 | HelpFunctions.SetLocalParametersForTree(random, 0.5, tree);
|
---|
| 399 | }
|
---|
| 400 | var distanceMatrix = DistanceMatrixCalculation(treeSetTemp, distanceType, problem);
|
---|
| 401 | for (int t = 0; t < setSize; t++) {
|
---|
| 402 | for (int j = 0; j < setSize; j++) {
|
---|
| 403 | totalDistance[t, j] += Math.Abs(distanceMatrix[t, j]) / repitNumber;
|
---|
| 404 | }
|
---|
| 405 | }
|
---|
| 406 | }
|
---|
| 407 | } else {
|
---|
| 408 | foreach (var tree in treeSetTemp) {
|
---|
| 409 | HelpFunctions.SetLocalParametersForTree(random, 0.5, tree);
|
---|
| 410 | }
|
---|
| 411 | totalDistance = CalculateDistances(treeSetTemp);
|
---|
| 412 | }
|
---|
| 413 | return totalDistance;
|
---|
| 414 | }
|
---|
| 415 | #endregion
|
---|
| 416 | #endregion
|
---|
| 417 | }
|
---|
| 418 | }
|
---|