Free cookie consent management tool by TermsFeed Policy Generator

source: branches/2988_ModelsOfModels2/HeuristicLab.Algorithms.EMM/ModelClustersFrequencyAnalyzer.cs @ 17002

Last change on this file since 17002 was 17002, checked in by msemenki, 6 years ago

#2988:
Class HelpFuction get new static functions that are used in different Map’s classes and possible in other classes.
Branch was adapted to Hive.
New version of class structure for Maps:

  1. 3 new variants of maps (RankMap, SuccessMap and ZeroMap) are added.
  2. BaseMap class was simplified, some class members were deleted and other were transported to child class, because some of them are not used in all kinds of maps.
  3. Functions between base class and child class were divided in other way.
  4. Mutation operators were adapted to work with new class structure. Now mutation make less work for ModelNodes than previously.
  5. ModelNode and Model symbols were simplified. They should not take into account a map type.
  6. Models frequency analyzers were adapted for new variants of maps.
  7. EMMAlgorithm class was adapted to new maps
File size: 8.2 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using HEAL.Attic;
23using HeuristicLab.Algorithms.EvolvmentModelsOfModels;
24using HeuristicLab.Analysis;
25using HeuristicLab.Common;
26using HeuristicLab.Core;
27using HeuristicLab.Data;
28using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
29using HeuristicLab.Optimization;
30using HeuristicLab.Parameters;
31using System;
32using System.Collections.Generic;
33using System.Linq;
34
35namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
36  /// <summary>
37  /// Calculates the accumulated frequencies of variable-symbols over all trees in the population.
38  /// </summary>
39  [Item("SymbolicDataAnalysisModelClustersFrequencyAnalyzer", "Calculates the accumulated frequencies of Model Clusters over all trees in the population.")]
40  [StorableType("4755115D-1B73-4577-BA2A-A762AE4C3B2F")]
41  public sealed class ModelClustersFrequencyAnalyzer : SymbolicDataAnalysisAnalyzer {
42    private const string ModelClustersFrequencyParameterName = "ModelClustersFrequency";
43    private const string AggregateModelClustersParameterName = "AggregateModelClusters";
44
45    #region parameter properties
46    private const string MapParameterName = "Map";
47    public ILookupParameter<DataTable> ModelClustersFrequencyParameter {
48      get { return (ILookupParameter<DataTable>)Parameters[ModelClustersFrequencyParameterName]; }
49    }
50    public IValueLookupParameter<BoolValue> AggregateModelClustersParameter {
51      get { return (IValueLookupParameter<BoolValue>)Parameters[AggregateModelClustersParameterName]; }
52    }
53    public ILookupParameter<EMMMapBase<ISymbolicExpressionTree>> MapParameter {
54      get { return (ILookupParameter<EMMMapBase<ISymbolicExpressionTree>>)Parameters[MapParameterName]; }
55    }
56
57    #endregion
58    #region properties
59    public BoolValue AggregateModelClusters {
60      get { return AggregateModelClustersParameter.ActualValue; }
61      set { AggregateModelClustersParameter.Value = value; }
62    }
63    public DataTable ModelClustersFrequency {
64      get { return ModelClustersFrequencyParameter.ActualValue; }
65      set { ModelClustersFrequencyParameter.ActualValue = value; }
66    }
67    #endregion
68    [StorableConstructor]
69    private ModelClustersFrequencyAnalyzer(StorableConstructorFlag _) : base(_) { }
70    private ModelClustersFrequencyAnalyzer(ModelClustersFrequencyAnalyzer original, Cloner cloner)
71      : base(original, cloner) {
72    }
73    public ModelClustersFrequencyAnalyzer()
74      : base() {
75      Parameters.Add(new LookupParameter<DataTable>(ModelClustersFrequencyParameterName, "The relative Model Clusters reference frequencies aggregated over all trees in the population."));
76      Parameters.Add(new ValueLookupParameter<BoolValue>(AggregateModelClustersParameterName, "Switch that determines whether all references to factor Model Clusters should be aggregated regardless of the value. Turn off to analyze all factor variable references with different values separately.", new BoolValue(true)));
77      Parameters.Add(new LookupParameter<EMMMapBase<ISymbolicExpressionTree>>(MapParameterName));
78    }
79
80    [StorableHook(HookType.AfterDeserialization)]
81    private void AfterDeserialization() {
82      // BackwardsCompatibility3.3
83      #region Backwards compatible code, remove with 3.4
84      if (!Parameters.ContainsKey(AggregateModelClustersParameterName)) {
85        Parameters.Add(new ValueLookupParameter<BoolValue>(AggregateModelClustersParameterName, "Switch that determines whether all references to factor Model Clusters should be aggregated regardless of the value. Turn off to analyze all factor Model Clusters references with different values separately.", new BoolValue(true)));
86      }
87      #endregion
88    }
89
90    public override IDeepCloneable Clone(Cloner cloner) {
91      return new ModelClustersFrequencyAnalyzer(this, cloner);
92    }
93
94    public override IOperation Apply() {
95      ItemArray<ISymbolicExpressionTree> expressions = SymbolicExpressionTreeParameter.ActualValue;
96      ResultCollection results = ResultCollection;
97      DataTable datatable;
98      if (ModelClustersFrequencyParameter.ActualValue == null) {
99        datatable = new DataTable("ModelClusters frequencies", "Relative frequency of ModelClusters references aggregated over the whole population.");
100        datatable.VisualProperties.XAxisTitle = "Generation";
101        datatable.VisualProperties.YAxisTitle = "Relative ModelClusters Frequency";
102        ModelClustersFrequencyParameter.ActualValue = datatable;
103        results.Add(new Result("ModelClusters frequencies", "Relative frequency of ModelClusters references aggregated over the whole population.", datatable));
104      }
105
106      datatable = ModelClustersFrequencyParameter.ActualValue;
107      // all rows must have the same number of values so we can just take the first
108      int numberOfValues = datatable.Rows.Select(r => r.Values.Count).DefaultIfEmpty().First();
109
110      foreach (var pair in CalculateModelClustersFrequency(expressions, MapParameter.ActualValue)) {
111        if (!datatable.Rows.ContainsKey(pair.Key)) {
112          // initialize a new row for the variable and pad with zeros
113          DataRow row = new DataRow(pair.Key, "", Enumerable.Repeat(0.0, numberOfValues));
114          row.VisualProperties.StartIndexZero = true;
115          datatable.Rows.Add(row);
116        }
117        datatable.Rows[pair.Key].Values.Add(Math.Round(pair.Value, 3));
118      }
119
120      // add a zero for each data row that was not modified in the previous loop
121      foreach (var row in datatable.Rows.Where(r => r.Values.Count != numberOfValues + 1))
122        row.Values.Add(0.0);
123
124      return base.Apply();
125    }
126
127    public static IEnumerable<KeyValuePair<string, double>> CalculateModelClustersFrequency(IEnumerable<ISymbolicExpressionTree> trees, EMMMapBase<ISymbolicExpressionTree> map) {
128      var modelClustersFrequency = trees
129          .SelectMany(t => GetModelClustersReferences(t, map))
130          .GroupBy(pair => pair.Key, pair => pair.Value)
131          .ToDictionary(g => g.Key, g => g.Sum());
132
133      double totalNumberOfSymbols = modelClustersFrequency.Values.Sum();
134
135      foreach (var pair in modelClustersFrequency.OrderBy(p => p.Key, new NaturalStringComparer()))
136        yield return new KeyValuePair<string, double>(pair.Key, pair.Value / totalNumberOfSymbols);
137    }
138
139    private static IEnumerable<KeyValuePair<string, double>> GetModelClustersReferences(ISymbolicExpressionTree tree, EMMMapBase<ISymbolicExpressionTree> map) {
140      Dictionary<string, double> references = new Dictionary<string, double>();
141      if (map is EMMIslandMap island) {
142        foreach (var treeNode in tree.IterateNodesPrefix().OfType<TreeModelTreeNode>()) {
143          string referenceId = "no";
144
145          referenceId = "Cluster " + island.ClusterNumber[treeNode.TreeNumber];
146          if (references.ContainsKey(referenceId)) {
147            int a = (int)references[referenceId];
148            a++;
149            references[referenceId] = a;
150          } else {
151            references[referenceId] = 1;
152          }
153        }
154      } else {
155        if (map is EMMSucsessMap sMap) {
156          for (int i = 0; i < map.ModelSet.Count; i++) {
157            string referenceId = "Tree Probability" + i;
158            references[referenceId] = sMap.Probabilities[i];
159          }
160        } else {
161          string referenceId = "no";
162          references[referenceId] = 0;
163        }
164      }
165      return references;
166    }
167  }
168}
Note: See TracBrowser for help on using the repository browser.