1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using HEAL.Attic;
|
---|
23 | using HeuristicLab.Common;
|
---|
24 | using HeuristicLab.Core;
|
---|
25 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
26 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
27 | using System;
|
---|
28 | using System.Collections.Generic;
|
---|
29 | using System.Linq;
|
---|
30 |
|
---|
31 | namespace HeuristicLab.Algorithms.EvolvmentModelsOfModels {
|
---|
32 | [Item("RankMap", "A map of models of models of models")]
|
---|
33 | [StorableType("1D4DD90E-553A-46DB-B0CD-6A899AA0B6D0")]
|
---|
34 | public class EMMRankMap : EMMMapBase<ISymbolicExpressionTree> { // it do not work absolutely
|
---|
35 | [Storable]
|
---|
36 | public List<List<double>> Probabilities { get; set; }
|
---|
37 | #region constructors
|
---|
38 | [StorableConstructor]
|
---|
39 | protected EMMRankMap(StorableConstructorFlag _) : base(_) { }
|
---|
40 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
41 | return new EMMRankMap(this, cloner);
|
---|
42 | }
|
---|
43 | public EMMRankMap() : base() {
|
---|
44 | ModelSet = new List<ISymbolicExpressionTree>();
|
---|
45 | Probabilities = new List<List<double>>();
|
---|
46 | }
|
---|
47 | public EMMRankMap(EMMRankMap original, Cloner cloner) : base(original, cloner) {
|
---|
48 | if (original.Probabilities != null) {
|
---|
49 | Probabilities = original.Probabilities.Select(x => x.ToList()).ToList();
|
---|
50 | }
|
---|
51 | }
|
---|
52 | #endregion
|
---|
53 | #region MapCreation
|
---|
54 | override public void CreateMap(IRandom random) {
|
---|
55 | MapSizeCheck(ModelSet.Count);
|
---|
56 | ApplyRankMapCreationAlgorithm(ModelSetPreparation.CalculateDistances(ModelSet), Map, Probabilities);
|
---|
57 | }
|
---|
58 | override public void CreateMap(IRandom random, ISymbolicDataAnalysisSingleObjectiveProblem problem) {
|
---|
59 | MapSizeCheck(ModelSet.Count);
|
---|
60 | ApplyRankMapCreationAlgorithm(ModelSetPreparation.DistanceMatrixCalculation(ModelSet, DistanceParametr, problem), Map, Probabilities);
|
---|
61 | }
|
---|
62 | override public void MapRead(IEnumerable<ISymbolicExpressionTree> trees) {
|
---|
63 | base.MapRead(trees);
|
---|
64 | MapFullment(trees.Count());
|
---|
65 | string fileName = ("Map" + DistanceParametr + ".txt");
|
---|
66 | Probabilities = FileComuncations.DoubleMatrixFromFileRead(fileName);
|
---|
67 | }
|
---|
68 | protected void MapFullment(int mapSize) {
|
---|
69 | if (Map != null) {
|
---|
70 | Map.Clear();
|
---|
71 | }
|
---|
72 | for (int t = 0; t < mapSize; t++) {
|
---|
73 | for (int i = 0; i < mapSize; i++) {
|
---|
74 | if (i == t)
|
---|
75 | continue;
|
---|
76 | Map[t].Add(i);
|
---|
77 | }
|
---|
78 | }
|
---|
79 | }
|
---|
80 | override public string[] MapToStoreInFile() { // Function that prepare Map to printing in .txt File: create a set of strings for future reading by computer
|
---|
81 | string[] s;
|
---|
82 | s = new string[Map.Count];
|
---|
83 | for (int i = 0; i < Map.Count; i++) {
|
---|
84 | s[i] = "";
|
---|
85 | for (int j = 0; j < (Map.Count - 1); j++) {
|
---|
86 | s[i] += Probabilities[i][j].ToString();
|
---|
87 | if (j != (Map.Count - 2)) { s[i] += " "; }
|
---|
88 | }
|
---|
89 | }
|
---|
90 | return s;
|
---|
91 | }
|
---|
92 | public static void ApplyRankMapCreationAlgorithm(double[,] distances, List<List<int>> map, List<List<double>> probabilities) {
|
---|
93 | int mapSize = distances.GetLength(0);
|
---|
94 | double tempSum = 0;
|
---|
95 | for (int i = 0; i < mapSize; i++) {
|
---|
96 | tempSum += i;
|
---|
97 | }
|
---|
98 | List<List<double>> currentList = new List<List<double>>();
|
---|
99 | for (int t = 0; t < mapSize; t++) {
|
---|
100 | for (int i = 0; i < mapSize; i++) {
|
---|
101 | if (distances[i, t].IsAlmost(0))
|
---|
102 | continue;
|
---|
103 | currentList.Add(new List<double>());
|
---|
104 | currentList[i].Add(i);
|
---|
105 | currentList[i].Add(distances[i, t]);
|
---|
106 | }
|
---|
107 | currentList.Sort((a, b) => a[1].CompareTo(b[1])); ///workable sorting
|
---|
108 | for (int i = 0; i < currentList.Count; i++) {
|
---|
109 | currentList[i].Add(currentList.Count - i);
|
---|
110 | }
|
---|
111 | probabilities.Add(new List<double>());
|
---|
112 | for (int i = 0; i < mapSize; i++) {
|
---|
113 | if (distances[i, t].IsAlmost(0))
|
---|
114 | continue;
|
---|
115 | map[t].Add(Convert.ToInt32(currentList[i][0]));
|
---|
116 | probabilities[t].Add(currentList[i][2] / tempSum);
|
---|
117 | }
|
---|
118 | currentList.Clear();
|
---|
119 | }
|
---|
120 | }
|
---|
121 | #endregion
|
---|
122 | #region Map Apply Functions
|
---|
123 | public override ISymbolicExpressionTree NewModelForMutation(IRandom random, out int treeNumber, int parentTreeNumber) {
|
---|
124 | treeNumber = Map[parentTreeNumber][HelpFunctions.OneElementFromListProportionalSelection(random, Probabilities[parentTreeNumber])];
|
---|
125 | return (ISymbolicExpressionTree)ModelSet[treeNumber].Clone();
|
---|
126 | }
|
---|
127 | override public ISymbolicExpressionTree NewModelForInizializtionNotTree(IRandom random, out int treeNumber) {
|
---|
128 | return NewModelForInizializtion(random, out treeNumber);
|
---|
129 | }
|
---|
130 | #endregion
|
---|
131 | }
|
---|
132 | }
|
---|