1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using HEAL.Attic;
|
---|
23 | using HeuristicLab.Common;
|
---|
24 | using HeuristicLab.Core;
|
---|
25 | using HeuristicLab.Data;
|
---|
26 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
27 | using HeuristicLab.Parameters;
|
---|
28 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
29 | using HeuristicLab.Random;
|
---|
30 | using System;
|
---|
31 | using System.Collections.Generic;
|
---|
32 |
|
---|
33 | namespace HeuristicLab.Algorithms.EvolvmentModelsOfModels {
|
---|
34 | [Item("NetworkMap", "A map of models of models of models")]
|
---|
35 | [StorableType("C200ECC2-6D33-4468-A538-580B07D75B3C")]
|
---|
36 | public class EMMNetworkMap : EMMMapBase<ISymbolicExpressionTree> {
|
---|
37 | private const string NegbourTypeParameterName = "NegbourType";
|
---|
38 | private const string NegbourNumberParameterName = "NegbourNumber";
|
---|
39 | public IFixedValueParameter<StringValue> NegbourTypeParameter {
|
---|
40 | get { return (IFixedValueParameter<StringValue>)Parameters[NegbourTypeParameterName]; }
|
---|
41 | }
|
---|
42 | public IValueParameter<IntValue> NegbourNumberParameter {
|
---|
43 | get { return (IValueParameter<IntValue>)Parameters[NegbourNumberParameterName]; }
|
---|
44 | }
|
---|
45 | public StringValue NegbourType {
|
---|
46 | get { return NegbourTypeParameter.Value; }
|
---|
47 | set { NegbourTypeParameter.Value.Value = value.Value; }
|
---|
48 | }
|
---|
49 | public IntValue NegbourNumber {
|
---|
50 | get { return NegbourNumberParameter.Value; }
|
---|
51 | set { NegbourNumberParameter.Value.Value = value.Value; }
|
---|
52 | }
|
---|
53 | #region constructors
|
---|
54 | [StorableConstructor]
|
---|
55 | protected EMMNetworkMap(StorableConstructorFlag _) : base(_) { }
|
---|
56 |
|
---|
57 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
58 | return new EMMNetworkMap(this, cloner);
|
---|
59 | }
|
---|
60 | public EMMNetworkMap() : base() {
|
---|
61 | Parameters.Add(new ValueParameter<IntValue>(NegbourNumberParameterName, "The parameter for FullMap type of map creation algorithm. Use one from: 10, 20.", new IntValue(10)));
|
---|
62 | Parameters.Add(new FixedValueParameter<StringValue>(NegbourTypeParameterName, "The parameter for FullMap type of map creation algorithm. Use one from: Percent, Number.", new StringValue("Number")));
|
---|
63 | MapParameterUpdate();
|
---|
64 | ModelSet = new List<ISymbolicExpressionTree>();
|
---|
65 | }
|
---|
66 | public EMMNetworkMap(EMMNetworkMap original, Cloner cloner) : base(original, cloner) { NegbourNumber = original.NegbourNumber; }
|
---|
67 | #endregion
|
---|
68 | #region Map Transformation
|
---|
69 | override public void CreateMap(IRandom random) {
|
---|
70 | MapParameterUpdate();
|
---|
71 | if (Map != null) {
|
---|
72 | Map.Clear();
|
---|
73 | }
|
---|
74 | ApplyNetworkMapCreationAlgorithm(random, ModelSetPreparation.CalculateDistances(ModelSet), Map, NegbourNumber.Value);
|
---|
75 | }
|
---|
76 | override public void CreateMap(IRandom random, ISymbolicDataAnalysisSingleObjectiveProblem problem) {
|
---|
77 | MapParameterUpdate();
|
---|
78 | if (Map != null) {
|
---|
79 | Map.Clear();
|
---|
80 | }
|
---|
81 | ApplyNetworkMapCreationAlgorithm(random, ModelSetPreparation.DistanceMatrixCalculation(ModelSet, DistanceParametr, problem), Map, NegbourNumber.Value);
|
---|
82 | }
|
---|
83 | override public void MapRead(IEnumerable<ISymbolicExpressionTree> trees) {
|
---|
84 | base.MapRead(trees);
|
---|
85 | string fileName = ("Map" + DistanceParametr + ".txt");
|
---|
86 | Map = FileComuncations.IntMatrixFromFileRead(fileName);
|
---|
87 | NegbourNumber.Value = Map[0].Count;
|
---|
88 | }
|
---|
89 | public static void ApplyNetworkMapCreationAlgorithm(IRandom random, double[,] distances, List<List<int>> map, int neghboorNumber = 10) {
|
---|
90 | int mapSize = distances.GetLength(0);
|
---|
91 | List<double> currentList = new List<double>();
|
---|
92 | for (int i = 0; i < mapSize; i++) {
|
---|
93 | map.Add(new List<int>());
|
---|
94 | for (int j = 0; j < mapSize; j++) {
|
---|
95 | currentList.Add(distances[i, j]);
|
---|
96 | }
|
---|
97 | map[i].Add(HelpFunctions.ChooseMinElementIndex(currentList));
|
---|
98 | while (map[i].Count < neghboorNumber) {
|
---|
99 | map[i].Add(HelpFunctions.ChooseMinElementIndex(currentList, i, map[i]));
|
---|
100 | }
|
---|
101 | currentList.Clear();
|
---|
102 | }
|
---|
103 | }
|
---|
104 | protected void MapParameterUpdate() {
|
---|
105 | switch (NegbourType.Value) {
|
---|
106 | case "Percent": NegbourNumber.Value = Convert.ToInt32((Convert.ToDouble(ModelSet.Count)) * (Convert.ToDouble(NegbourNumber.Value)) / 100.0); break;
|
---|
107 | case "Number": NegbourNumber.Value = NegbourNumber.Value; break;
|
---|
108 | default: NegbourNumber.Value = NegbourNumber.Value; break;
|
---|
109 | }
|
---|
110 | }
|
---|
111 | #endregion
|
---|
112 | #region Dialog with surroundings
|
---|
113 | public override ISymbolicExpressionTree NewModelForMutation(IRandom random, out int treeNumber, int parentTreeNumber) {
|
---|
114 | treeNumber = Map[parentTreeNumber].SampleRandom(random);
|
---|
115 | return (ISymbolicExpressionTree)ModelSet[treeNumber].Clone();
|
---|
116 | }
|
---|
117 | override public ISymbolicExpressionTree NewModelForInizializtionNotTree(IRandom random, out int treeNumber) {
|
---|
118 | var newTree = NewModelForInizializtion(random, out treeNumber);
|
---|
119 | return newTree;
|
---|
120 | }
|
---|
121 | #endregion
|
---|
122 | }
|
---|
123 | }
|
---|