1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 | using HeuristicLab.Core;
|
---|
22 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
23 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
24 | using HeuristicLab.Random;
|
---|
25 | using System.Collections.Generic;
|
---|
26 | using System.Linq;
|
---|
27 |
|
---|
28 | namespace HeuristicLab.Algorithms.EvolvmentModelsOfModels {
|
---|
29 | class HelpFunctions {
|
---|
30 | public static int OneElementFromListProportionalSelection(IRandom random, List<double> list) {
|
---|
31 | double selectedQuality = random.NextDouble() * list.Sum();
|
---|
32 | int index = 0;
|
---|
33 | double currentQuality = list[index];
|
---|
34 | while ((currentQuality < selectedQuality) && (index < list.Count)) {
|
---|
35 | index++;
|
---|
36 | currentQuality += list[index];
|
---|
37 | }
|
---|
38 | return index;
|
---|
39 | }
|
---|
40 | public static int ChooseMinElementIndex(List<double> distances, int currentElement, List<int> previousNumbers) {
|
---|
41 | double minValue = 100;
|
---|
42 | int minElementNumber = 0;
|
---|
43 | int temp = 0, i = 0;
|
---|
44 | while (temp == 0) {
|
---|
45 | if ((currentElement != i) && (!CheckNumberIsInList(i, previousNumbers))) {
|
---|
46 | minValue = distances[i];
|
---|
47 | minElementNumber = i;
|
---|
48 | temp = i;
|
---|
49 | }
|
---|
50 | i++;
|
---|
51 | }
|
---|
52 | for (i = 0; i < distances.Count(); i++) {
|
---|
53 | if ((distances[i] < minValue) && (currentElement != i) && (!CheckNumberIsInList(i, previousNumbers))) {
|
---|
54 | minValue = distances[i];
|
---|
55 | minElementNumber = i;
|
---|
56 | }
|
---|
57 | }
|
---|
58 | return minElementNumber;
|
---|
59 | }
|
---|
60 |
|
---|
61 | public static bool CheckNumberIsInList(int number, List<int> priviousNumber) {
|
---|
62 | foreach (var pNum in priviousNumber) {
|
---|
63 | if (number == pNum)
|
---|
64 | return true;
|
---|
65 | }
|
---|
66 | return false;
|
---|
67 | }
|
---|
68 | public static int ChooseMinElementIndex(List<double> averageClusterDistance) {
|
---|
69 | double minValue = averageClusterDistance[0];
|
---|
70 | int minElementNumber = 0;
|
---|
71 | for (int i = 1; i < averageClusterDistance.Count(); i++) {
|
---|
72 | if (averageClusterDistance[i] < minValue) {
|
---|
73 | minValue = averageClusterDistance[i];
|
---|
74 | minElementNumber = i;
|
---|
75 | }
|
---|
76 | }
|
---|
77 | return minElementNumber;
|
---|
78 | }
|
---|
79 | public static int ChooseMaxElementIndex(List<double> averageClusterDistance) {
|
---|
80 | double maxValue = averageClusterDistance[0];
|
---|
81 | int maxElementNumber = 0;
|
---|
82 | for (int i = 1; i < averageClusterDistance.Count(); i++) {
|
---|
83 | if (averageClusterDistance[i] > maxValue) {
|
---|
84 | maxValue = averageClusterDistance[i];
|
---|
85 | maxElementNumber = i;
|
---|
86 | }
|
---|
87 | }
|
---|
88 | return maxElementNumber;
|
---|
89 | }
|
---|
90 |
|
---|
91 | public static void SetLocalParametersForTree(IRandom random, double shakingFactor, ISymbolicExpressionTree tree) {
|
---|
92 | foreach (var node in tree.IterateNodesPrefix().Where(x => x.HasLocalParameters)) {
|
---|
93 | if (node is VariableTreeNode variableTreeNode) {
|
---|
94 | var symbol = variableTreeNode.Symbol;
|
---|
95 | variableTreeNode.Weight = NormalDistributedRandom.NextDouble(random, symbol.WeightManipulatorMu, symbol.WeightManipulatorSigma);
|
---|
96 | } else {
|
---|
97 | node.ResetLocalParameters(random);
|
---|
98 | }
|
---|
99 | }
|
---|
100 | }
|
---|
101 | }
|
---|
102 | }
|
---|