1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 | using HeuristicLab.Core;
|
---|
22 | using System.Collections.Generic;
|
---|
23 | using System.Linq;
|
---|
24 |
|
---|
25 | namespace HeuristicLab.Algorithms.EvolvmentModelsOfModels {
|
---|
26 | class HelpFunctions {
|
---|
27 | public static int OneElementFromListProportionalSelection(IRandom random, List<double> list) {
|
---|
28 | double selectedQuality = random.NextDouble() * list.Sum();
|
---|
29 | int index = 0;
|
---|
30 | double currentQuality = list[index];
|
---|
31 | while ((currentQuality < selectedQuality) && (index < list.Count)) {
|
---|
32 | index++;
|
---|
33 | currentQuality += list[index];
|
---|
34 | }
|
---|
35 | return index;
|
---|
36 | }
|
---|
37 | public static int ChooseMinElementIndex(List<double> distances, int currentElement, List<int> previousNumbers) {
|
---|
38 | double minValue = 100;
|
---|
39 | int minElementNumber = 0;
|
---|
40 | int temp = 0, i = 0;
|
---|
41 | while (temp == 0) {
|
---|
42 | if ((currentElement != i) && (!CheckNumberIsInList(i, previousNumbers))) {
|
---|
43 | minValue = distances[i];
|
---|
44 | minElementNumber = i;
|
---|
45 | temp = i;
|
---|
46 | }
|
---|
47 | i++;
|
---|
48 | }
|
---|
49 | for (i = 0; i < distances.Count(); i++) {
|
---|
50 | if ((distances[i] < minValue) && (currentElement != i) && (!CheckNumberIsInList(i, previousNumbers))) {
|
---|
51 | minValue = distances[i];
|
---|
52 | minElementNumber = i;
|
---|
53 | }
|
---|
54 | }
|
---|
55 | return minElementNumber;
|
---|
56 | }
|
---|
57 |
|
---|
58 | public static bool CheckNumberIsInList(int number, List<int> priviousNumber) {
|
---|
59 | foreach (var pNum in priviousNumber) {
|
---|
60 | if (number == pNum)
|
---|
61 | return true;
|
---|
62 | }
|
---|
63 | return false;
|
---|
64 | }
|
---|
65 | public static int ChooseMinElementIndex(List<double> averageClusterDistance) {
|
---|
66 | double minValue = averageClusterDistance[0];
|
---|
67 | int minElementNumber = 0;
|
---|
68 | for (int i = 1; i < averageClusterDistance.Count(); i++) {
|
---|
69 | if (averageClusterDistance[i] < minValue) {
|
---|
70 | minValue = averageClusterDistance[i];
|
---|
71 | minElementNumber = i;
|
---|
72 | }
|
---|
73 | }
|
---|
74 | return minElementNumber;
|
---|
75 | }
|
---|
76 | public static int ChooseMaxElementIndex(List<double> averageClusterDistance) {
|
---|
77 | double maxValue = averageClusterDistance[0];
|
---|
78 | int maxElementNumber = 0;
|
---|
79 | for (int i = 1; i < averageClusterDistance.Count(); i++) {
|
---|
80 | if (averageClusterDistance[i] > maxValue) {
|
---|
81 | maxValue = averageClusterDistance[i];
|
---|
82 | maxElementNumber = i;
|
---|
83 | }
|
---|
84 | }
|
---|
85 | return maxElementNumber;
|
---|
86 | }
|
---|
87 | public static double CheckSocialKatre(double socialKarteValue, double value, double stepValue) {
|
---|
88 | if (value > (socialKarteValue + stepValue))
|
---|
89 | return stepValue;
|
---|
90 | else if (value > socialKarteValue)
|
---|
91 | return (value - socialKarteValue);
|
---|
92 | else return 0;
|
---|
93 | }
|
---|
94 | public static void ProbabilitiesUpDate(List<List<double>> sucsessStatistics, List<double> probabilities) {
|
---|
95 |
|
---|
96 | var averageQuality = new List<double>();
|
---|
97 | foreach (var variant in sucsessStatistics) {
|
---|
98 | if (variant[0] > 0.005) {
|
---|
99 | averageQuality.Add(variant[1] / variant[0]);
|
---|
100 | } else { averageQuality.Add(0); }
|
---|
101 | }
|
---|
102 | int bestModelNumber = ChooseMaxElementIndex(averageQuality);
|
---|
103 | double socialKarte = 1.0 / (probabilities.Count * 20.0); // parameters of method
|
---|
104 | double stepValue = socialKarte / 5.0;
|
---|
105 | double totalChangeValue = 0, changeValue = 0;
|
---|
106 | for (int i = 0; i < probabilities.Count; i++) {
|
---|
107 | changeValue = CheckSocialKatre(socialKarte, probabilities[i], stepValue);
|
---|
108 | totalChangeValue += changeValue;
|
---|
109 | probabilities[i] -= changeValue;
|
---|
110 | }
|
---|
111 | probabilities[bestModelNumber] += totalChangeValue;
|
---|
112 | }
|
---|
113 | }
|
---|
114 | }
|
---|