[17002] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 | using HeuristicLab.Core;
|
---|
[17134] | 22 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 23 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
| 24 | using HeuristicLab.Random;
|
---|
[16899] | 25 | using System.Collections.Generic;
|
---|
| 26 | using System.Linq;
|
---|
| 27 |
|
---|
| 28 | namespace HeuristicLab.Algorithms.EvolvmentModelsOfModels {
|
---|
| 29 | class HelpFunctions {
|
---|
[17002] | 30 | public static int OneElementFromListProportionalSelection(IRandom random, List<double> list) {
|
---|
| 31 | double selectedQuality = random.NextDouble() * list.Sum();
|
---|
| 32 | int index = 0;
|
---|
| 33 | double currentQuality = list[index];
|
---|
| 34 | while ((currentQuality < selectedQuality) && (index < list.Count)) {
|
---|
| 35 | index++;
|
---|
| 36 | currentQuality += list[index];
|
---|
| 37 | }
|
---|
| 38 | return index;
|
---|
| 39 | }
|
---|
[16899] | 40 | public static int ChooseMinElementIndex(List<double> distances, int currentElement, List<int> previousNumbers) {
|
---|
| 41 | double minValue = 100;
|
---|
| 42 | int minElementNumber = 0;
|
---|
| 43 | int temp = 0, i = 0;
|
---|
| 44 | while (temp == 0) {
|
---|
| 45 | if ((currentElement != i) && (!CheckNumberIsInList(i, previousNumbers))) {
|
---|
| 46 | minValue = distances[i];
|
---|
| 47 | minElementNumber = i;
|
---|
| 48 | temp = i;
|
---|
| 49 | }
|
---|
| 50 | i++;
|
---|
| 51 | }
|
---|
| 52 | for (i = 0; i < distances.Count(); i++) {
|
---|
| 53 | if ((distances[i] < minValue) && (currentElement != i) && (!CheckNumberIsInList(i, previousNumbers))) {
|
---|
| 54 | minValue = distances[i];
|
---|
| 55 | minElementNumber = i;
|
---|
| 56 | }
|
---|
| 57 | }
|
---|
| 58 | return minElementNumber;
|
---|
| 59 | }
|
---|
[17002] | 60 |
|
---|
[16899] | 61 | public static bool CheckNumberIsInList(int number, List<int> priviousNumber) {
|
---|
| 62 | foreach (var pNum in priviousNumber) {
|
---|
| 63 | if (number == pNum)
|
---|
| 64 | return true;
|
---|
| 65 | }
|
---|
| 66 | return false;
|
---|
| 67 | }
|
---|
| 68 | public static int ChooseMinElementIndex(List<double> averageClusterDistance) {
|
---|
| 69 | double minValue = averageClusterDistance[0];
|
---|
| 70 | int minElementNumber = 0;
|
---|
| 71 | for (int i = 1; i < averageClusterDistance.Count(); i++) {
|
---|
| 72 | if (averageClusterDistance[i] < minValue) {
|
---|
| 73 | minValue = averageClusterDistance[i];
|
---|
| 74 | minElementNumber = i;
|
---|
| 75 | }
|
---|
| 76 | }
|
---|
| 77 | return minElementNumber;
|
---|
| 78 | }
|
---|
[17002] | 79 | public static int ChooseMaxElementIndex(List<double> averageClusterDistance) {
|
---|
| 80 | double maxValue = averageClusterDistance[0];
|
---|
| 81 | int maxElementNumber = 0;
|
---|
| 82 | for (int i = 1; i < averageClusterDistance.Count(); i++) {
|
---|
| 83 | if (averageClusterDistance[i] > maxValue) {
|
---|
| 84 | maxValue = averageClusterDistance[i];
|
---|
| 85 | maxElementNumber = i;
|
---|
| 86 | }
|
---|
| 87 | }
|
---|
| 88 | return maxElementNumber;
|
---|
| 89 | }
|
---|
| 90 |
|
---|
[17134] | 91 | public static void SetLocalParametersForTree(IRandom random, double shakingFactor, ISymbolicExpressionTree tree) {
|
---|
| 92 | foreach (var node in tree.IterateNodesPrefix().Where(x => x.HasLocalParameters)) {
|
---|
| 93 | if (node is VariableTreeNode variableTreeNode) {
|
---|
| 94 | var symbol = variableTreeNode.Symbol;
|
---|
| 95 | variableTreeNode.Weight = NormalDistributedRandom.NextDouble(random, symbol.WeightManipulatorMu, symbol.WeightManipulatorSigma);
|
---|
| 96 | } else {
|
---|
| 97 | node.ResetLocalParameters(random);
|
---|
| 98 | }
|
---|
[17002] | 99 | }
|
---|
| 100 | }
|
---|
[16899] | 101 | }
|
---|
| 102 | }
|
---|