Free cookie consent management tool by TermsFeed Policy Generator

source: branches/2988_ModelsOfModels2/HeuristicLab.Algorithms.EMM/EMMDisatanceMap.cs @ 17021

Last change on this file since 17021 was 17002, checked in by msemenki, 6 years ago

#2988:
Class HelpFuction get new static functions that are used in different Map’s classes and possible in other classes.
Branch was adapted to Hive.
New version of class structure for Maps:

  1. 3 new variants of maps (RankMap, SuccessMap and ZeroMap) are added.
  2. BaseMap class was simplified, some class members were deleted and other were transported to child class, because some of them are not used in all kinds of maps.
  3. Functions between base class and child class were divided in other way.
  4. Mutation operators were adapted to work with new class structure. Now mutation make less work for ModelNodes than previously.
  5. ModelNode and Model symbols were simplified. They should not take into account a map type.
  6. Models frequency analyzers were adapted for new variants of maps.
  7. EMMAlgorithm class was adapted to new maps
File size: 3.2 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using HEAL.Attic;
23using HeuristicLab.Common;
24using HeuristicLab.Core;
25using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
26using System;
27using System.Collections.Generic;
28
29namespace HeuristicLab.Algorithms.EvolvmentModelsOfModels {
30  [Item("DistanceMap", "A map of models of models of models")]
31  [StorableType("456692FB-2149-4359-8106-45D59D2D7FA0")]
32  public class EMMDisatanceMap : EMMMapBase<ISymbolicExpressionTree> {
33    [Storable]
34    public List<List<double>> Probabilities { get; set; }
35    #region conctructors
36    [StorableConstructor]
37    protected EMMDisatanceMap(StorableConstructorFlag _) : base(_) { }
38    public override IDeepCloneable Clone(Cloner cloner) {
39      return new EMMDisatanceMap(this, cloner);
40    }
41    public EMMDisatanceMap() : base() { ModelSet = new List<ISymbolicExpressionTree>(); }
42    public EMMDisatanceMap(EMMDisatanceMap original, Cloner cloner) : base(original, cloner) { }
43    #endregion
44    #region MapCreation
45    override public void CreateMap(IRandom random, int k) {
46
47      Probabilities = new List<List<double>>();
48      MapSizeCheck(ModelSet.Count);
49      ApplyDistanceMapCreationAlgorithm(random, CalculateDistances(), Map, Probabilities);
50    }
51    public static void ApplyDistanceMapCreationAlgorithm(IRandom random, double[,] distances, List<List<int>> map, List<List<double>> probabilities) {
52      int mapSize = distances.GetLength(0);
53      for (int t = 0; t < mapSize; t++) {
54        probabilities.Add(new List<double>());
55        double tempSum = 0;
56        for (int i = 0; i < mapSize; i++) {
57          tempSum += Math.Log(distances[i, t]);
58        }
59        for (int i = 0; i < mapSize; i++) {
60          if (distances[i, t].IsAlmost(0))
61            continue;
62          map[t].Add(i);
63          probabilities[t].Add(Math.Log(distances[i, t]) / tempSum);
64        }
65      }
66    }
67    #endregion
68    #region MapApplayFunctions
69    public override ISymbolicExpressionTree NewModelForMutation(IRandom random, out int treeNumber, int parentTreeNumber) {
70      treeNumber = HelpFunctions.OneElementFromListProportionalSelection(random, Probabilities[parentTreeNumber]);
71      return (ISymbolicExpressionTree)ModelSet[treeNumber].Clone();
72    }
73    override public ISymbolicExpressionTree NewModelForInizializtionNotTree(IRandom random, out int treeNumber) {
74      return NewModelForInizializtion(random, out treeNumber);
75    }
76    #endregion
77  }
78}
Note: See TracBrowser for help on using the repository browser.