[17002] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using HEAL.Attic;
|
---|
[16899] | 23 | using HeuristicLab.Common;
|
---|
| 24 | using HeuristicLab.Core;
|
---|
| 25 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
[17002] | 26 | using System;
|
---|
[16899] | 27 | using System.Collections.Generic;
|
---|
| 28 |
|
---|
| 29 | namespace HeuristicLab.Algorithms.EvolvmentModelsOfModels {
|
---|
| 30 | [Item("DistanceMap", "A map of models of models of models")]
|
---|
| 31 | [StorableType("456692FB-2149-4359-8106-45D59D2D7FA0")]
|
---|
| 32 | public class EMMDisatanceMap : EMMMapBase<ISymbolicExpressionTree> {
|
---|
[17002] | 33 | [Storable]
|
---|
| 34 | public List<List<double>> Probabilities { get; set; }
|
---|
[16899] | 35 | #region conctructors
|
---|
| 36 | [StorableConstructor]
|
---|
| 37 | protected EMMDisatanceMap(StorableConstructorFlag _) : base(_) { }
|
---|
| 38 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 39 | return new EMMDisatanceMap(this, cloner);
|
---|
| 40 | }
|
---|
[17002] | 41 | public EMMDisatanceMap() : base() { ModelSet = new List<ISymbolicExpressionTree>(); }
|
---|
[16899] | 42 | public EMMDisatanceMap(EMMDisatanceMap original, Cloner cloner) : base(original, cloner) { }
|
---|
| 43 | #endregion
|
---|
[17002] | 44 | #region MapCreation
|
---|
[16899] | 45 | override public void CreateMap(IRandom random, int k) {
|
---|
[17002] | 46 |
|
---|
| 47 | Probabilities = new List<List<double>>();
|
---|
| 48 | MapSizeCheck(ModelSet.Count);
|
---|
| 49 | ApplyDistanceMapCreationAlgorithm(random, CalculateDistances(), Map, Probabilities);
|
---|
[16899] | 50 | }
|
---|
[17002] | 51 | public static void ApplyDistanceMapCreationAlgorithm(IRandom random, double[,] distances, List<List<int>> map, List<List<double>> probabilities) {
|
---|
[16899] | 52 | int mapSize = distances.GetLength(0);
|
---|
[17002] | 53 | for (int t = 0; t < mapSize; t++) {
|
---|
| 54 | probabilities.Add(new List<double>());
|
---|
| 55 | double tempSum = 0;
|
---|
| 56 | for (int i = 0; i < mapSize; i++) {
|
---|
| 57 | tempSum += Math.Log(distances[i, t]);
|
---|
[16899] | 58 | }
|
---|
[17002] | 59 | for (int i = 0; i < mapSize; i++) {
|
---|
| 60 | if (distances[i, t].IsAlmost(0))
|
---|
| 61 | continue;
|
---|
| 62 | map[t].Add(i);
|
---|
| 63 | probabilities[t].Add(Math.Log(distances[i, t]) / tempSum);
|
---|
[16899] | 64 | }
|
---|
| 65 | }
|
---|
| 66 | }
|
---|
[17002] | 67 | #endregion
|
---|
| 68 | #region MapApplayFunctions
|
---|
| 69 | public override ISymbolicExpressionTree NewModelForMutation(IRandom random, out int treeNumber, int parentTreeNumber) {
|
---|
| 70 | treeNumber = HelpFunctions.OneElementFromListProportionalSelection(random, Probabilities[parentTreeNumber]);
|
---|
| 71 | return (ISymbolicExpressionTree)ModelSet[treeNumber].Clone();
|
---|
[16899] | 72 | }
|
---|
[17002] | 73 | override public ISymbolicExpressionTree NewModelForInizializtionNotTree(IRandom random, out int treeNumber) {
|
---|
| 74 | return NewModelForInizializtion(random, out treeNumber);
|
---|
| 75 | }
|
---|
[16899] | 76 | #endregion
|
---|
| 77 | }
|
---|
| 78 | }
|
---|