1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using HEAL.Attic;
|
---|
23 | using HeuristicLab.Common;
|
---|
24 | using HeuristicLab.Core;
|
---|
25 | using HeuristicLab.Data;
|
---|
26 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
27 | using HeuristicLab.Problems.DataAnalysis;
|
---|
28 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
29 | using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression;
|
---|
30 | using HeuristicLab.Random;
|
---|
31 | using HeuristicLab.Selection;
|
---|
32 | using System.Collections.Generic;
|
---|
33 | using System.Linq;
|
---|
34 | using CancellationToken = System.Threading.CancellationToken;
|
---|
35 | using Variable = HeuristicLab.Core.Variable;
|
---|
36 |
|
---|
37 | namespace HeuristicLab.Algorithms.EvolvmentModelsOfModels {
|
---|
38 | [Item("Evolvement Models Of Models Algorithm (EMM) ", "EMM implementation")]
|
---|
39 | [Creatable(CreatableAttribute.Categories.PopulationBasedAlgorithms, Priority = 125)]
|
---|
40 | [StorableType("AD23B21F-089A-4C6C-AD2E-1B01E7939CF5")]
|
---|
41 | public class EMMAlgorithm : EvolvmentModelsOfModelsAlgorithmBase {
|
---|
42 | #region Constructors
|
---|
43 | public EMMAlgorithm() : base() { }
|
---|
44 | protected EMMAlgorithm(EMMAlgorithm original, Cloner cloner) : base(original, cloner) { }
|
---|
45 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
46 | return new EMMAlgorithm(this, cloner);
|
---|
47 | }
|
---|
48 |
|
---|
49 | [StorableConstructor]
|
---|
50 | protected EMMAlgorithm(StorableConstructorFlag _) : base(_) { }
|
---|
51 | #endregion
|
---|
52 | #region Algorithm run
|
---|
53 | protected override void Run(CancellationToken cancellationToken) {
|
---|
54 |
|
---|
55 | Map.DistanceParametr = DistanceType.Value;
|
---|
56 |
|
---|
57 | if (AlgorithmImplemetationType.Value == "Read") {
|
---|
58 | Map.MapRead(trees);
|
---|
59 | } else {
|
---|
60 | Map.MapCreationPrepare(trees);
|
---|
61 | Map.CreateMap(RandomParameter.Value, Problem);
|
---|
62 | }
|
---|
63 | if (previousExecutionState != ExecutionState.Paused) {
|
---|
64 | InitializeAlgorithm(cancellationToken);
|
---|
65 | }
|
---|
66 | if (!globalScope.Variables.ContainsKey("TreeModelMap"))
|
---|
67 | globalScope.Variables.Add(new Variable("TreeModelMap", Map));
|
---|
68 | if (!globalScope.Variables.ContainsKey("Map"))
|
---|
69 | globalScope.Variables.Add(new Variable("Map", Map));
|
---|
70 | EMMAlgorithmRun(cancellationToken);
|
---|
71 | }
|
---|
72 | private void EMMAlgorithmRun(CancellationToken cancellationToken) {
|
---|
73 | var bestSelector = new BestSelector();
|
---|
74 | bestSelector.CopySelected = new BoolValue(false);
|
---|
75 | bestSelector.MaximizationParameter.ActualName = "Maximization";
|
---|
76 | bestSelector.NumberOfSelectedSubScopesParameter.ActualName = "Elites";
|
---|
77 | bestSelector.QualityParameter.ActualName = "Quality";
|
---|
78 |
|
---|
79 | var maximumEvaluatedSolutions = MaximumEvaluatedSolutions.Value;
|
---|
80 | var crossover = Crossover;
|
---|
81 | var selector = Selector;
|
---|
82 | var crossoverProbability = CrossoverProbability.Value;
|
---|
83 | var mutator = Mutator;
|
---|
84 | var mutationProbability = MutationProbability.Value;
|
---|
85 | var evaluator = Problem.Evaluator;
|
---|
86 | var analyzer = Analyzer;
|
---|
87 | var rand = RandomParameter.Value;
|
---|
88 | var elites = Elites.Value;
|
---|
89 | var fmd = new InfixExpressionFormatter();
|
---|
90 | // cancellation token for the inner operations which should not be immediately canceled
|
---|
91 | var innerToken = new CancellationToken();
|
---|
92 | // for future
|
---|
93 | //var mutatorTypes = new SymbolicExpressionTreeManipulator[]
|
---|
94 | //{
|
---|
95 | // new EMMMultyPointsMutator(),
|
---|
96 | // new EMMMultyPointsMutatorNodeTypeSaving (),
|
---|
97 | // new EMMMutators()
|
---|
98 | //};
|
---|
99 | //var tuu = MutatorParameter.ValidValues;
|
---|
100 | //var select = SelectorParameter.ValidValues;
|
---|
101 |
|
---|
102 | while (EvaluatedSolutions < maximumEvaluatedSolutions && !cancellationToken.IsCancellationRequested) {
|
---|
103 |
|
---|
104 | var op4 = executionContext.CreateChildOperation(bestSelector, executionContext.Scope); // select elites
|
---|
105 | ExecuteOperation(executionContext, innerToken, op4);
|
---|
106 |
|
---|
107 | var remaining = executionContext.Scope.SubScopes.Single(x => x.Name == "Remaining");
|
---|
108 | executionContext.Scope.SubScopes.AddRange(remaining.SubScopes);
|
---|
109 | var selected = executionContext.Scope.SubScopes.Single(x => x.Name == "Selected");
|
---|
110 | executionContext.Scope.SubScopes.AddRange(selected.SubScopes);
|
---|
111 | Population.Clear();
|
---|
112 | Population.AddRange(selected.SubScopes.Select(x => new EMMSolution(x)));
|
---|
113 | executionContext.Scope.SubScopes.Remove(remaining);
|
---|
114 | executionContext.Scope.SubScopes.Remove(selected);
|
---|
115 |
|
---|
116 | var op = executionContext.CreateChildOperation(selector, executionContext.Scope);// select the rest of the Population
|
---|
117 | ExecuteOperation(executionContext, innerToken, op);
|
---|
118 |
|
---|
119 | remaining = executionContext.Scope.SubScopes.Single(x => x.Name == "Remaining");
|
---|
120 | selected = executionContext.Scope.SubScopes.Single(x => x.Name == "Selected");
|
---|
121 |
|
---|
122 | for (int i = 0; i < selector.NumberOfSelectedSubScopesParameter.Value.Value; i += 2) {
|
---|
123 | IScope childScope = null;
|
---|
124 | // for future
|
---|
125 | //var obbbb = CrossoverParameter.ValidValues.ToList();
|
---|
126 | //int nn = 3;
|
---|
127 | //if (rand.NextDouble() < crossoverProbability) {
|
---|
128 | // childScope = new Scope($"{i}+{i + 1}") { Parent = executionContext.Scope };
|
---|
129 | // childScope.SubScopes.Add(selected.SubScopes[i]);
|
---|
130 | // childScope.SubScopes.Add(selected.SubScopes[i + 1]);
|
---|
131 | // var op1 = executionContext.CreateChildOperation(obbbb[nn], childScope);
|
---|
132 | // ExecuteOperation(executionContext, innerToken, op1);
|
---|
133 | // childScope.SubScopes.Clear();
|
---|
134 | //}
|
---|
135 |
|
---|
136 | if (rand.NextDouble() < crossoverProbability) {
|
---|
137 | childScope = new Scope($"{i}+{i + 1}") { Parent = executionContext.Scope };
|
---|
138 | childScope.SubScopes.Add(selected.SubScopes[i]);
|
---|
139 | childScope.SubScopes.Add(selected.SubScopes[i + 1]);
|
---|
140 | var op1 = executionContext.CreateChildOperation(crossover, childScope);
|
---|
141 | ExecuteOperation(executionContext, innerToken, op1);
|
---|
142 | childScope.SubScopes.Clear();
|
---|
143 | }
|
---|
144 |
|
---|
145 | childScope = childScope ?? selected.SubScopes[i];
|
---|
146 | // mutation
|
---|
147 | if (rand.NextDouble() < mutationProbability) {
|
---|
148 | var op2 = executionContext.CreateChildOperation(mutator, childScope);
|
---|
149 | ExecuteOperation(executionContext, innerToken, op2);
|
---|
150 | }
|
---|
151 |
|
---|
152 | // evaluation
|
---|
153 | if (childScope != null) {
|
---|
154 | if (!childScope.Variables.ContainsKey("Quality"))
|
---|
155 | childScope.Variables.Add(new Variable("Quality"));
|
---|
156 | EvaluationComplex(executionContext, innerToken, childScope);
|
---|
157 | } else {// no crossover or mutation were applied, a child was not produced, do nothing
|
---|
158 | Population.Add(new EMMSolution(selected.SubScopes[i]));
|
---|
159 | }
|
---|
160 | if (EvaluatedSolutions >= maximumEvaluatedSolutions) {
|
---|
161 | break;
|
---|
162 | }
|
---|
163 | }
|
---|
164 |
|
---|
165 | UpDateParameters();
|
---|
166 |
|
---|
167 | globalScope.SubScopes.Replace(Population.Select(x => (IScope)x.Individual));
|
---|
168 | // run analyzer
|
---|
169 | var analyze = executionContext.CreateChildOperation(analyzer, globalScope);
|
---|
170 | ExecuteOperation(executionContext, innerToken, analyze);
|
---|
171 |
|
---|
172 | Results.AddOrUpdateResult("Evaluated Solutions", new IntValue(EvaluatedSolutions));
|
---|
173 | }
|
---|
174 | }
|
---|
175 | protected virtual void UpDateParameters() {
|
---|
176 | if (Map is EMMSucsessMap) {
|
---|
177 | var population = new Dictionary<ISymbolicExpressionTree, double>();
|
---|
178 | foreach (var individ in Population) {
|
---|
179 | var tree = (ISymbolicExpressionTree)(((IScope)individ.Individual).Variables["SymbolicExpressionTree"].Value);
|
---|
180 | population.Add(tree, individ.Qualities.Value);
|
---|
181 | }
|
---|
182 | Map.MapUpDate(population);
|
---|
183 | population.Clear();
|
---|
184 | }
|
---|
185 | }
|
---|
186 | #endregion
|
---|
187 | #region Initialization
|
---|
188 | protected void InitializeAlgorithm(CancellationToken cancellationToken) {
|
---|
189 | globalScope = new Scope("Global Scope");
|
---|
190 | executionContext = new ExecutionContext(null, this, globalScope);
|
---|
191 |
|
---|
192 | // set the execution context for parameters to allow lookup
|
---|
193 | foreach (var parameter in Problem.Parameters.OfType<IValueParameter>()) {
|
---|
194 | globalScope.Variables.Add(new Variable(parameter.Name, parameter.Value));
|
---|
195 | }
|
---|
196 | globalScope.Variables.Add(new Variable("Results", Results)); // make results available as a parameter for analyzers etc.
|
---|
197 |
|
---|
198 | var rand = RandomParameter.Value;
|
---|
199 | if (SetSeedRandomly) Seed = RandomSeedGenerator.GetSeed();
|
---|
200 | rand.Reset(Seed);
|
---|
201 | EvaluatedSolutions = 0;
|
---|
202 | // InitializeParametrs(); for future
|
---|
203 | InitializePopulation(executionContext, cancellationToken, rand);
|
---|
204 |
|
---|
205 |
|
---|
206 | base.Initialize(cancellationToken);
|
---|
207 | }
|
---|
208 | protected virtual void InitializeParametrs() { }
|
---|
209 |
|
---|
210 | private void InitializePopulation(ExecutionContext executionContext, CancellationToken cancellationToken, IRandom random) {
|
---|
211 | Population = new List<IEMMSolution>();
|
---|
212 | var fmd = new InfixExpressionFormatter();
|
---|
213 | var evaluator = Problem.Evaluator;
|
---|
214 | var creator = Problem.SolutionCreator;
|
---|
215 | var parser = new InfixExpressionParser();
|
---|
216 |
|
---|
217 | var parentScope = executionContext.Scope; //main scope for the next step work
|
---|
218 | // first, create all individuals
|
---|
219 | for (int i = 0; i < PopulationSize.Value; ++i) {
|
---|
220 | var childScope = new Scope(i.ToString()) { Parent = parentScope };
|
---|
221 | ExecuteOperation(executionContext, cancellationToken, executionContext.CreateChildOperation(creator, childScope));
|
---|
222 | var name = ((ISymbolicExpressionTreeCreator)creator).SymbolicExpressionTreeParameter.ActualName;
|
---|
223 | var tree = (ISymbolicExpressionTree)childScope.Variables[name].Value;
|
---|
224 |
|
---|
225 | foreach (var node in tree.IterateNodesPostfix().OfType<TreeModelTreeNode>()) {
|
---|
226 | Map.NodeManipulationForInizializtion(random, node);
|
---|
227 | }
|
---|
228 | parentScope.SubScopes.Add(childScope);
|
---|
229 | }
|
---|
230 | // then, evaluate them and update qualities
|
---|
231 | for (int i = 0; i < PopulationSize.Value; ++i) {
|
---|
232 | var childScope = parentScope.SubScopes[i];
|
---|
233 | if (!childScope.Variables.ContainsKey("Quality"))
|
---|
234 | childScope.Variables.Add(new Variable("Quality", new DoubleValue(0)));
|
---|
235 | EvaluationComplex(executionContext, cancellationToken, childScope);
|
---|
236 | }
|
---|
237 | }
|
---|
238 | #endregion
|
---|
239 | #region Evaluators
|
---|
240 | private void EvaluationComplex(ExecutionContext executionContext, CancellationToken cancellationToken, IScope childScope) {
|
---|
241 | var evaluator = Problem.Evaluator;
|
---|
242 | if (evaluator is SymbolicRegressionConstantOptimizationEvaluator eval) {
|
---|
243 | var creator = Problem.SolutionCreator;
|
---|
244 | var name = ((ISymbolicExpressionTreeCreator)creator).SymbolicExpressionTreeParameter.ActualName;
|
---|
245 | var tree = (ISymbolicExpressionTree)childScope.Variables[name].Value;
|
---|
246 | var treeWithModelInside = ModelToTreePusher(tree);
|
---|
247 |
|
---|
248 | //ExecuteOperation(executionContext, cancellationToken, executionContext.CreateChildOperation(evaluator, treeScope));
|
---|
249 | var pd = (IRegressionProblemData)Problem.ProblemData;
|
---|
250 | var estimationLimits = ((SymbolicRegressionSingleObjectiveProblem)Problem).EstimationLimits;
|
---|
251 | var interpreter = new SymbolicDataAnalysisExpressionTreeBatchInterpreter();
|
---|
252 | var quality = SymbolicRegressionConstantOptimizationEvaluator.OptimizeConstants(interpreter, treeWithModelInside, pd, pd.TrainingIndices, applyLinearScaling: true, maxIterations: 10, updateVariableWeights: true, lowerEstimationLimit: estimationLimits.Lower, upperEstimationLimit: estimationLimits.Upper, updateConstantsInTree: true);
|
---|
253 | childScope.Variables["Quality"].Value = new DoubleValue(quality);
|
---|
254 |
|
---|
255 | int index = 0;
|
---|
256 | ConstuntValuesInTreeUpdate(tree, ConstantValuesFromTreeToListExtruction(treeWithModelInside), ref index);
|
---|
257 | childScope.Variables[name].Value = tree;
|
---|
258 | EvaluatedSolutions += 10;
|
---|
259 | } else {
|
---|
260 | var op3 = executionContext.CreateChildOperation(evaluator, childScope);
|
---|
261 | ExecuteOperation(executionContext, cancellationToken, op3);
|
---|
262 | EvaluatedSolutions += 1;
|
---|
263 | }
|
---|
264 | Population.Add(new EMMSolution(childScope));
|
---|
265 | }
|
---|
266 | private ISymbolicExpressionTree ModelToTreePusher(ISymbolicExpressionTree tree) {
|
---|
267 | //All model nodes in tree are exchange to trees that are stored in model nodes.
|
---|
268 | // After this function we have deal with usual tree
|
---|
269 | var clone = (ISymbolicExpressionTree)tree.Clone();
|
---|
270 | foreach (var node in clone.IterateNodesPostfix().OfType<TreeModelTreeNode>()) {
|
---|
271 | var newChild = node.Tree.Root.GetSubtree(0).GetSubtree(0);
|
---|
272 | Swap(node, newChild);
|
---|
273 | }
|
---|
274 | return clone;
|
---|
275 | }
|
---|
276 | protected static void Swap(ISymbolicExpressionTreeNode oldChild, ISymbolicExpressionTreeNode newChild) {
|
---|
277 | var parent = oldChild.Parent;
|
---|
278 | if (parent == null)
|
---|
279 | return;
|
---|
280 |
|
---|
281 | var index = parent.IndexOfSubtree(oldChild);
|
---|
282 | parent.RemoveSubtree(index);
|
---|
283 | parent.InsertSubtree(index, newChild);
|
---|
284 | }
|
---|
285 | private List<double> ConstantValuesFromTreeToListExtruction(ISymbolicExpressionTree tree) {
|
---|
286 | //This function stored in a list all constants and coefficients from the tree
|
---|
287 | var constants = new List<double>();
|
---|
288 | foreach (var node in tree.IterateNodesPostfix()) {
|
---|
289 | if (node is ConstantTreeNode cNode) {
|
---|
290 | constants.Add(cNode.Value);
|
---|
291 | }
|
---|
292 | if (node is VariableTreeNode vNode) {
|
---|
293 | constants.Add(vNode.Weight);
|
---|
294 | }
|
---|
295 | }
|
---|
296 | return constants;
|
---|
297 | }
|
---|
298 | private void ConstuntValuesInTreeUpdate(ISymbolicExpressionTree tree, List<double> constants, ref int index) {
|
---|
299 | foreach (var node in tree.IterateNodesPostfix()) {
|
---|
300 | if (node is ConstantTreeNode cNode) {
|
---|
301 | cNode.Value = constants[index];
|
---|
302 | index++;
|
---|
303 | } else if (node is VariableTreeNode vNode) {
|
---|
304 | vNode.Weight = constants[index];
|
---|
305 | index++;
|
---|
306 | } else if (node is TreeModelTreeNode mNode) {
|
---|
307 | ConstuntValuesInTreeUpdate(mNode.Tree, constants, ref index);
|
---|
308 | }
|
---|
309 |
|
---|
310 | }
|
---|
311 | }
|
---|
312 | #endregion
|
---|
313 | #region Local Search
|
---|
314 | // next function was not tested in real work
|
---|
315 | private void LocalDecent(ISymbolicDataAnalysisSingleObjectiveProblem problem, CancellationToken cancellationToken, IScope childScope) {
|
---|
316 | int maxStepNumber = 100;
|
---|
317 | var name = ((ISymbolicExpressionTreeCreator)Problem.SolutionCreator).SymbolicExpressionTreeParameter.ActualName;
|
---|
318 | var tree = (ISymbolicExpressionTree)childScope.Variables[name].Value;
|
---|
319 | var oldTree = tree.Clone();
|
---|
320 | ExecuteOperation(executionContext, cancellationToken, executionContext.CreateChildOperation(problem.Evaluator, childScope));
|
---|
321 | var rand = RandomParameter.Value;
|
---|
322 | if (SetSeedRandomly) Seed = RandomSeedGenerator.GetSeed();
|
---|
323 | rand.Reset(Seed);
|
---|
324 | while (maxStepNumber > 0) {
|
---|
325 | maxStepNumber = TreeIterator(tree.Root, rand, cancellationToken, childScope, maxStepNumber);
|
---|
326 | }
|
---|
327 | }
|
---|
328 | int TreeIterator(ISymbolicExpressionTreeNode a, IRandom rand, CancellationToken cancellationToken, IScope childScope, int maxStepNumber) {
|
---|
329 | if (a is TreeModelTreeNode modelNode) {
|
---|
330 | ModelChange(modelNode, rand, cancellationToken, childScope);
|
---|
331 | maxStepNumber--;
|
---|
332 | }
|
---|
333 | if (a.Subtrees != null) {
|
---|
334 | for (int i = 0; i < (a.Subtrees.Count()); i++) {
|
---|
335 | TreeIterator(a.Subtrees.ToList()[i], rand, cancellationToken, childScope, maxStepNumber);
|
---|
336 | }
|
---|
337 | }
|
---|
338 | return maxStepNumber;
|
---|
339 | }
|
---|
340 | void ModelChange(TreeModelTreeNode tree, IRandom rand, CancellationToken cancellationToken, IScope childScope) {
|
---|
341 | int treeNumber = tree.TreeNumber;
|
---|
342 | var oldSubTree = (ISymbolicExpressionTree)tree.Tree.Clone();
|
---|
343 | double oldQuality = ((DoubleValue)childScope.Variables["Quality"].Value).Value;
|
---|
344 | int cluster;
|
---|
345 | if (Map is EMMIslandMap map)
|
---|
346 | cluster = map.ClusterNumber[treeNumber];
|
---|
347 | else cluster = treeNumber;
|
---|
348 | int newTreeNumber = rand.Next(Map.Map[cluster].Count);
|
---|
349 | tree.Tree = (ISymbolicExpressionTree)Map.ModelSet[newTreeNumber].Clone();
|
---|
350 | tree.Tree.Root.ShakeLocalParameters(rand, 1);
|
---|
351 | var evaluator = Problem.Evaluator;
|
---|
352 | ExecuteOperation(executionContext, cancellationToken, executionContext.CreateChildOperation(evaluator, childScope));
|
---|
353 | double currentQuality = ((DoubleValue)childScope.Variables["Quality"].Value).Value;
|
---|
354 | if (oldQuality > currentQuality) {
|
---|
355 | tree.Tree = (ISymbolicExpressionTree)oldSubTree.Clone();
|
---|
356 | ((DoubleValue)childScope.Variables["Quality"].Value).Value = oldQuality;
|
---|
357 | }
|
---|
358 | }
|
---|
359 | #endregion
|
---|
360 | }
|
---|
361 |
|
---|
362 |
|
---|
363 | }
|
---|
364 |
|
---|