[16722] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using HEAL.Attic;
|
---|
| 23 | using HeuristicLab.Common;
|
---|
| 24 | using HeuristicLab.Core;
|
---|
| 25 | using HeuristicLab.Data;
|
---|
| 26 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 27 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
| 28 | using HeuristicLab.Random;
|
---|
| 29 | using HeuristicLab.Selection;
|
---|
[16760] | 30 | using System;
|
---|
[16722] | 31 | using System.Collections.Generic;
|
---|
| 32 | using System.IO;
|
---|
| 33 | using System.Linq;
|
---|
| 34 | using CancellationToken = System.Threading.CancellationToken;
|
---|
| 35 | using Variable = HeuristicLab.Core.Variable;
|
---|
| 36 |
|
---|
| 37 | namespace HeuristicLab.Algorithms.EvolvmentModelsOfModels {
|
---|
| 38 | [Item("EvolvmentModelsOfModels Algorithm ", "EMM implementation")]
|
---|
| 39 | [Creatable(CreatableAttribute.Categories.PopulationBasedAlgorithms, Priority = 125)]
|
---|
[16734] | 40 | [StorableType("AD23B21F-089A-4C6C-AD2E-1B01E7939CF5")]
|
---|
[16722] | 41 | public class EMMAlgorithm : EvolvmentModelsOfModelsAlgorithmBase {
|
---|
| 42 | public EMMMapTreeModel Map { get; private set; }
|
---|
| 43 |
|
---|
| 44 | public EMMAlgorithm() : base() { }
|
---|
| 45 | protected EMMAlgorithm(EMMAlgorithm original, Cloner cloner) : base(original, cloner) {
|
---|
| 46 | if (original.Map != null) {
|
---|
| 47 | Map = cloner.Clone(original.Map);
|
---|
| 48 | }
|
---|
| 49 | }
|
---|
| 50 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 51 | return new EMMAlgorithm(this, cloner);
|
---|
| 52 | }
|
---|
| 53 |
|
---|
| 54 | [StorableConstructor]
|
---|
| 55 | protected EMMAlgorithm(StorableConstructorFlag _) : base(_) { }
|
---|
| 56 |
|
---|
| 57 | protected override void Run(CancellationToken cancellationToken) {
|
---|
| 58 | InfixExpressionParser parser = new InfixExpressionParser();
|
---|
| 59 | var trees = File.ReadAllLines(InputFileParameter.Value.Value).Select(parser.Parse);
|
---|
[16734] | 60 | // this.Problem.SymbolicExpressionTreeGrammar;
|
---|
| 61 | /* Problem.ProblemData.Dataset.ColumnNames.Take(2).ToList();
|
---|
| 62 | trees.First().Root.Grammar.ContainsSymbol((IVariable)a).
|
---|
| 63 | = this.Problem.SymbolicExpressionTreeGrammar;*/
|
---|
[16760] | 64 | int neghboorNumber = 10;
|
---|
| 65 | switch (MapCreationType.Value) { // Configure Map type and it's parameters: IslandMap, FullMap and Percent, Number
|
---|
| 66 | case "IslandMap": break;
|
---|
| 67 | case "FullMap":
|
---|
| 68 | ClusterNumbersParameter.Value.Value = trees.Count();
|
---|
| 69 | switch (NegbourType.Value) {
|
---|
| 70 | case "Percent": neghboorNumber = Convert.ToInt32((Convert.ToDouble(ClusterNumbersParameter.Value.Value)) * (Convert.ToDouble(NegbourNumber.Value)) / 100.0); break;
|
---|
| 71 | case "Number": neghboorNumber = NegbourNumber.Value; break;
|
---|
| 72 | default: neghboorNumber = NegbourNumber.Value; break;
|
---|
| 73 | }
|
---|
| 74 | break;
|
---|
| 75 | default: MapCreationType.Value = "IslandMap"; break;
|
---|
| 76 | }
|
---|
| 77 | switch (AlgorithmImplemetationType.Value) { //Configure type of algorithm application
|
---|
| 78 | case "OnlyMapCreation": // for case when we want only create map, and do not want made somting also. OnlyMapCreation, CrateMapAndGo, ReadMapAndGo
|
---|
| 79 | Map = new EMMMapTreeModel(RandomParameter.Value, trees, ClusterNumbersParameter.Value.Value, neghboorNumber);
|
---|
[16734] | 80 | ClusterNumbersParameter.Value.Value = Map.K;
|
---|
| 81 | File.WriteAllLines("Map.txt", Map.MapToString());
|
---|
| 82 | File.WriteAllLines("MapToSee.txt", Map.MapToSee());
|
---|
| 83 | globalScope = new Scope("Global Scope");
|
---|
| 84 | executionContext = new ExecutionContext(null, this, globalScope);
|
---|
| 85 | break;
|
---|
[16760] | 86 | case "ReadMapAndGo": // for case when we want read existed map and work with it;
|
---|
[16734] | 87 | Map = new EMMMapTreeModel(RandomParameter.Value, trees);
|
---|
| 88 | ClusterNumbersParameter.Value.Value = Map.K;
|
---|
| 89 | if (previousExecutionState != ExecutionState.Paused) {
|
---|
| 90 | InitializeAlgorithm(cancellationToken);
|
---|
| 91 | }
|
---|
| 92 | globalScope.Variables.Add(new Variable("TreeModelMap", Map));
|
---|
[16760] | 93 | EMMAlgorithmRun(cancellationToken);
|
---|
[16734] | 94 | break;
|
---|
[16760] | 95 | case "CreateMapAndGo":
|
---|
| 96 | Map = new EMMMapTreeModel(RandomParameter.Value, trees, ClusterNumbersParameter.Value.Value, neghboorNumber);
|
---|
| 97 | ClusterNumbersParameter.Value.Value = Map.K;
|
---|
| 98 | if (previousExecutionState != ExecutionState.Paused) {
|
---|
| 99 | InitializeAlgorithm(cancellationToken);
|
---|
| 100 | }
|
---|
| 101 | globalScope.Variables.Add(new Variable("TreeModelMap", Map));
|
---|
| 102 | File.WriteAllLines("Map.txt", Map.MapToString());
|
---|
| 103 | File.WriteAllLines("MapToSee.txt", Map.MapToSee());
|
---|
| 104 | EMMAlgorithmRun(cancellationToken);
|
---|
| 105 | break;
|
---|
[16734] | 106 | default: //for case of usial from zero step starting
|
---|
[16760] | 107 | AlgorithmImplemetationType.Value = "CreateMapAndGo";
|
---|
| 108 | Map = new EMMMapTreeModel(RandomParameter.Value, trees, ClusterNumbersParameter.Value.Value, neghboorNumber);
|
---|
[16734] | 109 | ClusterNumbersParameter.Value.Value = Map.K;
|
---|
[16760] | 110 | File.WriteAllLines("Map.txt", Map.MapToString());
|
---|
| 111 | File.WriteAllLines("MapToSee.txt", Map.MapToSee());
|
---|
[16734] | 112 | if (previousExecutionState != ExecutionState.Paused) {
|
---|
| 113 | InitializeAlgorithm(cancellationToken);
|
---|
| 114 | }
|
---|
| 115 | globalScope.Variables.Add(new Variable("TreeModelMap", Map));
|
---|
[16760] | 116 | EMMAlgorithmRun(cancellationToken);
|
---|
[16734] | 117 | break;
|
---|
[16722] | 118 | }
|
---|
[16734] | 119 |
|
---|
[16722] | 120 | }
|
---|
[16760] | 121 | private void EMMAlgorithmRun(CancellationToken cancellationToken) {
|
---|
[16722] | 122 | var bestSelector = new BestSelector();
|
---|
| 123 | bestSelector.CopySelected = new BoolValue(false);
|
---|
| 124 | bestSelector.MaximizationParameter.ActualName = "Maximization";
|
---|
| 125 | bestSelector.NumberOfSelectedSubScopesParameter.ActualName = "Elites";
|
---|
| 126 | bestSelector.QualityParameter.ActualName = "Quality";
|
---|
| 127 |
|
---|
| 128 | var populationSize = PopulationSize.Value;
|
---|
| 129 | var maximumEvaluatedSolutions = MaximumEvaluatedSolutions.Value;
|
---|
| 130 | var crossover = Crossover;
|
---|
| 131 | var selector = Selector;
|
---|
| 132 | var groupSize = GroupSize.Value;
|
---|
| 133 | var crossoverProbability = CrossoverProbability.Value;
|
---|
| 134 | var mutator = Mutator;
|
---|
| 135 | var mutationProbability = MutationProbability.Value;
|
---|
| 136 | var evaluator = Problem.Evaluator;
|
---|
| 137 | var analyzer = Analyzer;
|
---|
| 138 | var rand = RandomParameter.Value;
|
---|
| 139 | var elites = Elites.Value;
|
---|
| 140 |
|
---|
| 141 | // cancellation token for the inner operations which should not be immediately cancelled
|
---|
| 142 | var innerToken = new CancellationToken();
|
---|
| 143 |
|
---|
[16760] | 144 | while (EvaluatedSolutions < maximumEvaluatedSolutions && !cancellationToken.IsCancellationRequested) {
|
---|
[16722] | 145 |
|
---|
| 146 | var op4 = executionContext.CreateChildOperation(bestSelector, executionContext.Scope); // select elites
|
---|
| 147 | ExecuteOperation(executionContext, innerToken, op4);
|
---|
| 148 |
|
---|
| 149 | var remaining = executionContext.Scope.SubScopes.Single(x => x.Name == "Remaining");
|
---|
| 150 | executionContext.Scope.SubScopes.AddRange(remaining.SubScopes);
|
---|
| 151 | var selected = executionContext.Scope.SubScopes.Single(x => x.Name == "Selected");
|
---|
| 152 | executionContext.Scope.SubScopes.AddRange(selected.SubScopes);
|
---|
[16760] | 153 | Population.Clear();
|
---|
| 154 | Population.AddRange(selected.SubScopes.Select(x => new EMMSolution(x)));
|
---|
[16722] | 155 | executionContext.Scope.SubScopes.Remove(remaining);
|
---|
| 156 | executionContext.Scope.SubScopes.Remove(selected);
|
---|
| 157 |
|
---|
[16760] | 158 | var op = executionContext.CreateChildOperation(selector, executionContext.Scope);// select the rest of the Population
|
---|
[16722] | 159 | ExecuteOperation(executionContext, innerToken, op);
|
---|
| 160 |
|
---|
| 161 | remaining = executionContext.Scope.SubScopes.Single(x => x.Name == "Remaining");
|
---|
| 162 | selected = executionContext.Scope.SubScopes.Single(x => x.Name == "Selected");
|
---|
| 163 |
|
---|
| 164 | for (int i = 0; i < selector.NumberOfSelectedSubScopesParameter.Value.Value; i += 2) {
|
---|
| 165 | // crossover
|
---|
| 166 | IScope childScope = null;
|
---|
| 167 | if (rand.NextDouble() < crossoverProbability) {
|
---|
| 168 | childScope = new Scope($"{i}+{i + 1}") { Parent = executionContext.Scope };
|
---|
| 169 | childScope.SubScopes.Add(selected.SubScopes[i]);
|
---|
| 170 | childScope.SubScopes.Add(selected.SubScopes[i + 1]);
|
---|
| 171 | var op1 = executionContext.CreateChildOperation(crossover, childScope);
|
---|
| 172 | ExecuteOperation(executionContext, innerToken, op1);
|
---|
| 173 | childScope.SubScopes.Clear();
|
---|
| 174 | }
|
---|
| 175 |
|
---|
| 176 | childScope = childScope ?? selected.SubScopes[i];
|
---|
| 177 | // mutation
|
---|
| 178 | if (rand.NextDouble() < mutationProbability) {
|
---|
| 179 | var op2 = executionContext.CreateChildOperation(mutator, childScope);
|
---|
| 180 | ExecuteOperation(executionContext, innerToken, op2);
|
---|
| 181 | }
|
---|
| 182 |
|
---|
| 183 | // evaluation
|
---|
| 184 | if (childScope != null) {
|
---|
| 185 | var op3 = executionContext.CreateChildOperation(evaluator, childScope);
|
---|
| 186 | ExecuteOperation(executionContext, innerToken, op3);
|
---|
| 187 | var qualities = (DoubleValue)childScope.Variables["Quality"].Value;
|
---|
| 188 | var childSolution = new EMMSolution(childScope);
|
---|
| 189 | // set child qualities
|
---|
| 190 | childSolution.Qualities = qualities;
|
---|
[16760] | 191 | ++EvaluatedSolutions;
|
---|
| 192 | Population.Add(new EMMSolution(childScope));
|
---|
[16722] | 193 | } else {// no crossover or mutation were applied, a child was not produced, do nothing
|
---|
[16760] | 194 | Population.Add(new EMMSolution(selected.SubScopes[i]));
|
---|
[16722] | 195 | }
|
---|
| 196 |
|
---|
[16760] | 197 | if (EvaluatedSolutions >= maximumEvaluatedSolutions) {
|
---|
[16722] | 198 | break;
|
---|
| 199 | }
|
---|
| 200 |
|
---|
| 201 | }
|
---|
[16760] | 202 | globalScope.SubScopes.Replace(Population.Select(x => (IScope)x.Individual));
|
---|
[16722] | 203 | // run analyzer
|
---|
| 204 | var analyze = executionContext.CreateChildOperation(analyzer, globalScope);
|
---|
| 205 | ExecuteOperation(executionContext, innerToken, analyze);
|
---|
[16760] | 206 | Results.AddOrUpdateResult("Evaluated Solutions", new IntValue(EvaluatedSolutions));
|
---|
[16722] | 207 | }
|
---|
| 208 | }
|
---|
| 209 | protected void InitializeAlgorithm(CancellationToken cancellationToken) {
|
---|
| 210 | globalScope = new Scope("Global Scope");
|
---|
| 211 | executionContext = new ExecutionContext(null, this, globalScope);
|
---|
| 212 |
|
---|
| 213 | // set the execution context for parameters to allow lookup
|
---|
| 214 | foreach (var parameter in Problem.Parameters.OfType<IValueParameter>()) { //
|
---|
| 215 | // we need all of these in order for the wiring of the operators to work
|
---|
| 216 | globalScope.Variables.Add(new Core.Variable(parameter.Name, parameter.Value));
|
---|
| 217 | }
|
---|
| 218 | globalScope.Variables.Add(new Core.Variable("Results", Results)); // make results available as a parameter for analyzers etc.
|
---|
| 219 |
|
---|
| 220 | var rand = RandomParameter.Value;
|
---|
| 221 | if (SetSeedRandomly) Seed = RandomSeedGenerator.GetSeed();
|
---|
| 222 | rand.Reset(Seed);
|
---|
| 223 |
|
---|
| 224 | var populationSize = PopulationSize.Value;
|
---|
| 225 |
|
---|
| 226 | InitializePopulation(executionContext, cancellationToken, rand);
|
---|
| 227 |
|
---|
| 228 | // initialize data structures for map clustering
|
---|
| 229 | var models = new ItemList<ISymbolicExpressionTree>(Map.ModelSet);
|
---|
| 230 | var map = new ItemList<ItemList<IntValue>>();
|
---|
| 231 | foreach (var list in Map.Map) {
|
---|
| 232 | map.Add(new ItemList<IntValue>(list.Select(x => new IntValue(x))));
|
---|
| 233 | }
|
---|
| 234 | var clusterNumber = new ItemList<IntValue>(Map.ClusterNumber.Select(x => new IntValue(x)));
|
---|
| 235 | globalScope.Variables.Add(new Core.Variable("Models", models));
|
---|
| 236 | globalScope.Variables.Add(new Core.Variable("Map", map));
|
---|
| 237 | globalScope.Variables.Add(new Core.Variable("ClusterNumber", clusterNumber));
|
---|
| 238 |
|
---|
[16760] | 239 | EvaluatedSolutions = populationSize;
|
---|
[16722] | 240 | base.Initialize(cancellationToken);
|
---|
| 241 | }
|
---|
| 242 | private void InitializePopulation(ExecutionContext executionContext, CancellationToken cancellationToken, IRandom random) {
|
---|
| 243 | var creator = Problem.SolutionCreator;
|
---|
| 244 | var evaluator = Problem.Evaluator;
|
---|
| 245 | var populationSize = PopulationSize.Value;
|
---|
[16760] | 246 | Population = new List<IEMMSolution>(populationSize);
|
---|
[16722] | 247 |
|
---|
| 248 | var parentScope = executionContext.Scope; //main scope for the next step work
|
---|
| 249 | // first, create all individuals
|
---|
| 250 | for (int i = 0; i < populationSize; ++i) {
|
---|
| 251 | var childScope = new Scope(i.ToString()) { Parent = parentScope };
|
---|
| 252 | ExecuteOperation(executionContext, cancellationToken, executionContext.CreateChildOperation(creator, childScope));
|
---|
| 253 | var name = ((ISymbolicExpressionTreeCreator)creator).SymbolicExpressionTreeParameter.ActualName;
|
---|
| 254 | var tree = (ISymbolicExpressionTree)childScope.Variables[name].Value;
|
---|
| 255 | foreach (var node in tree.IterateNodesPostfix().OfType<TreeModelTreeNode>()) {
|
---|
| 256 | node.Tree = Map.NewModelForInizializtion(random, out int cluster, out int treeNumber);
|
---|
[16734] | 257 | node.SetLocalParameters(random, 0.5);
|
---|
[16722] | 258 | node.ClusterNumer = cluster;
|
---|
| 259 | node.TreeNumber = treeNumber;
|
---|
| 260 | }
|
---|
| 261 | parentScope.SubScopes.Add(childScope);
|
---|
| 262 | }
|
---|
| 263 |
|
---|
| 264 | // then, evaluate them and update qualities
|
---|
| 265 | for (int i = 0; i < populationSize; ++i) {
|
---|
| 266 | var childScope = parentScope.SubScopes[i];
|
---|
| 267 | ExecuteOperation(executionContext, cancellationToken, executionContext.CreateChildOperation(evaluator, childScope));
|
---|
| 268 |
|
---|
| 269 | var qualities = (DoubleValue)childScope.Variables["Quality"].Value;
|
---|
| 270 | var solution = new EMMSolution(childScope); // Create solution and push individual inside
|
---|
| 271 |
|
---|
| 272 | solution.Qualities = qualities;
|
---|
[16760] | 273 | Population.Add(solution); // push solution to Population
|
---|
[16722] | 274 | }
|
---|
| 275 | }
|
---|
| 276 | }
|
---|
| 277 |
|
---|
| 278 | }
|
---|
| 279 |
|
---|