1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using HEAL.Attic;
|
---|
23 | using HeuristicLab.Analysis;
|
---|
24 | using HeuristicLab.Common;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Data;
|
---|
27 | using HeuristicLab.ExpressionGenerator;
|
---|
28 | using HeuristicLab.Optimization;
|
---|
29 | using HeuristicLab.Parameters;
|
---|
30 | using HeuristicLab.Problems.DataAnalysis;
|
---|
31 | using HeuristicLab.Problems.TestFunctions.MultiObjective;
|
---|
32 | using HeuristicLab.Random;
|
---|
33 | using System;
|
---|
34 | using System.Collections.Generic;
|
---|
35 | using System.Drawing;
|
---|
36 | using System.Linq;
|
---|
37 | using CancellationToken = System.Threading.CancellationToken;
|
---|
38 |
|
---|
39 | namespace HeuristicLab.Algorithms.MOEAD {
|
---|
40 | [Item("MOEADAlgorithmBase", "Base class for all MOEA/D algorithm variants.")]
|
---|
41 | [StorableType("E00BAC79-C6F9-42B6-8468-DEEC7FFCE804")]
|
---|
42 | public abstract class MOEADAlgorithmBase : BasicAlgorithm {
|
---|
43 | #region data members
|
---|
44 | [StorableType("C04DB21A-316F-4210-9CA7-A915BE8EBC96")]
|
---|
45 | protected enum NeighborType { NEIGHBOR, POPULATION }
|
---|
46 |
|
---|
47 | [StorableType("FE35F480-E522-45E0-A229-99E61DA7B8BC")]
|
---|
48 | // TCHE = Chebyshev (Tchebyshev)
|
---|
49 | // PBI = Penalty-based boundary intersection
|
---|
50 | // AGG = Weighted sum
|
---|
51 | public enum FunctionType { TCHE, PBI, AGG }
|
---|
52 |
|
---|
53 | [Storable]
|
---|
54 | protected double[] IdealPoint { get; set; }
|
---|
55 | [Storable]
|
---|
56 | protected double[] NadirPoint { get; set; } // potentially useful for objective normalization
|
---|
57 |
|
---|
58 | [Storable]
|
---|
59 | protected double[][] lambda;
|
---|
60 |
|
---|
61 | [Storable]
|
---|
62 | protected int[][] neighbourhood;
|
---|
63 |
|
---|
64 | [Storable]
|
---|
65 | protected IMOEADSolution[] solutions;
|
---|
66 |
|
---|
67 | [Storable]
|
---|
68 | protected FunctionType functionType;
|
---|
69 |
|
---|
70 | [Storable]
|
---|
71 | protected IMOEADSolution[] population;
|
---|
72 |
|
---|
73 | [Storable]
|
---|
74 | protected IMOEADSolution[] offspringPopulation;
|
---|
75 |
|
---|
76 | [Storable]
|
---|
77 | protected IMOEADSolution[] jointPopulation;
|
---|
78 |
|
---|
79 | [Storable]
|
---|
80 | protected int evaluatedSolutions;
|
---|
81 |
|
---|
82 | [Storable]
|
---|
83 | protected ExecutionContext executionContext;
|
---|
84 |
|
---|
85 | [Storable]
|
---|
86 | protected IScope globalScope;
|
---|
87 |
|
---|
88 | [Storable]
|
---|
89 | protected ExecutionState previousExecutionState;
|
---|
90 |
|
---|
91 | [Storable]
|
---|
92 | protected ExecutionState executionState;
|
---|
93 | #endregion
|
---|
94 |
|
---|
95 | #region parameters
|
---|
96 | private const string SeedParameterName = "Seed";
|
---|
97 | private const string SetSeedRandomlyParameterName = "SetSeedRandomly";
|
---|
98 | private const string PopulationSizeParameterName = "PopulationSize";
|
---|
99 | private const string ResultPopulationSizeParameterName = "ResultPopulationSize";
|
---|
100 | private const string CrossoverProbabilityParameterName = "CrossoverProbability";
|
---|
101 | private const string CrossoverParameterName = "Crossover";
|
---|
102 | private const string MutationProbabilityParameterName = "MutationProbability";
|
---|
103 | private const string MutatorParameterName = "Mutator";
|
---|
104 | private const string MaximumEvaluatedSolutionsParameterName = "MaximumEvaluatedSolutions";
|
---|
105 | private const string RandomParameterName = "Random";
|
---|
106 | private const string AnalyzerParameterName = "Analyzer";
|
---|
107 | // MOEA-D parameters
|
---|
108 | private const string NeighbourSizeParameterName = "NeighbourSize";
|
---|
109 | private const string NeighbourhoodSelectionProbabilityParameterName = "NeighbourhoodSelectionProbability";
|
---|
110 | private const string MaximumNumberOfReplacedSolutionsParameterName = "MaximumNumberOfReplacedSolutions";
|
---|
111 | private const string FunctionTypeParameterName = "FunctionType";
|
---|
112 | private const string NormalizeObjectivesParameterName = "NormalizeObjectives";
|
---|
113 |
|
---|
114 | public IValueParameter<MultiAnalyzer> AnalyzerParameter {
|
---|
115 | get { return (ValueParameter<MultiAnalyzer>)Parameters[AnalyzerParameterName]; }
|
---|
116 | }
|
---|
117 |
|
---|
118 | public IConstrainedValueParameter<StringValue> FunctionTypeParameter {
|
---|
119 | get { return (IConstrainedValueParameter<StringValue>)Parameters[FunctionTypeParameterName]; }
|
---|
120 | }
|
---|
121 | public IFixedValueParameter<IntValue> NeighbourSizeParameter {
|
---|
122 | get { return (IFixedValueParameter<IntValue>)Parameters[NeighbourSizeParameterName]; }
|
---|
123 | }
|
---|
124 | public IFixedValueParameter<BoolValue> NormalizeObjectivesParameter {
|
---|
125 | get { return (IFixedValueParameter<BoolValue>)Parameters[NormalizeObjectivesParameterName]; }
|
---|
126 | }
|
---|
127 | public IFixedValueParameter<IntValue> MaximumNumberOfReplacedSolutionsParameter {
|
---|
128 | get { return (IFixedValueParameter<IntValue>)Parameters[MaximumNumberOfReplacedSolutionsParameterName]; }
|
---|
129 | }
|
---|
130 | public IFixedValueParameter<DoubleValue> NeighbourhoodSelectionProbabilityParameter {
|
---|
131 | get { return (IFixedValueParameter<DoubleValue>)Parameters[NeighbourhoodSelectionProbabilityParameterName]; }
|
---|
132 | }
|
---|
133 | public IFixedValueParameter<IntValue> SeedParameter {
|
---|
134 | get { return (IFixedValueParameter<IntValue>)Parameters[SeedParameterName]; }
|
---|
135 | }
|
---|
136 | public IFixedValueParameter<BoolValue> SetSeedRandomlyParameter {
|
---|
137 | get { return (IFixedValueParameter<BoolValue>)Parameters[SetSeedRandomlyParameterName]; }
|
---|
138 | }
|
---|
139 | private IValueParameter<IntValue> PopulationSizeParameter {
|
---|
140 | get { return (IValueParameter<IntValue>)Parameters[PopulationSizeParameterName]; }
|
---|
141 | }
|
---|
142 | private IValueParameter<IntValue> ResultPopulationSizeParameter {
|
---|
143 | get { return (IValueParameter<IntValue>)Parameters[ResultPopulationSizeParameterName]; }
|
---|
144 | }
|
---|
145 | public IValueParameter<PercentValue> CrossoverProbabilityParameter {
|
---|
146 | get { return (IValueParameter<PercentValue>)Parameters[CrossoverProbabilityParameterName]; }
|
---|
147 | }
|
---|
148 | public IConstrainedValueParameter<ICrossover> CrossoverParameter {
|
---|
149 | get { return (IConstrainedValueParameter<ICrossover>)Parameters[CrossoverParameterName]; }
|
---|
150 | }
|
---|
151 | public IValueParameter<PercentValue> MutationProbabilityParameter {
|
---|
152 | get { return (IValueParameter<PercentValue>)Parameters[MutationProbabilityParameterName]; }
|
---|
153 | }
|
---|
154 | public IConstrainedValueParameter<IManipulator> MutatorParameter {
|
---|
155 | get { return (IConstrainedValueParameter<IManipulator>)Parameters[MutatorParameterName]; }
|
---|
156 | }
|
---|
157 | public IValueParameter<IntValue> MaximumEvaluatedSolutionsParameter {
|
---|
158 | get { return (IValueParameter<IntValue>)Parameters[MaximumEvaluatedSolutionsParameterName]; }
|
---|
159 | }
|
---|
160 | public IValueParameter<IRandom> RandomParameter {
|
---|
161 | get { return (IValueParameter<IRandom>)Parameters[RandomParameterName]; }
|
---|
162 | }
|
---|
163 | #endregion
|
---|
164 |
|
---|
165 | #region parameter properties
|
---|
166 | public new IMultiObjectiveHeuristicOptimizationProblem Problem {
|
---|
167 | get { return (IMultiObjectiveHeuristicOptimizationProblem)base.Problem; }
|
---|
168 | set { base.Problem = value; }
|
---|
169 | }
|
---|
170 | public int Seed {
|
---|
171 | get { return SeedParameter.Value.Value; }
|
---|
172 | set { SeedParameter.Value.Value = value; }
|
---|
173 | }
|
---|
174 | public bool SetSeedRandomly {
|
---|
175 | get { return SetSeedRandomlyParameter.Value.Value; }
|
---|
176 | set { SetSeedRandomlyParameter.Value.Value = value; }
|
---|
177 | }
|
---|
178 | public bool NormalizeObjectives {
|
---|
179 | get { return NormalizeObjectivesParameter.Value.Value; }
|
---|
180 | set { NormalizeObjectivesParameter.Value.Value = value; }
|
---|
181 | }
|
---|
182 | public IntValue PopulationSize {
|
---|
183 | get { return PopulationSizeParameter.Value; }
|
---|
184 | set { PopulationSizeParameter.Value = value; }
|
---|
185 | }
|
---|
186 | public IntValue ResultPopulationSize {
|
---|
187 | get { return ResultPopulationSizeParameter.Value; }
|
---|
188 | set { ResultPopulationSizeParameter.Value = value; }
|
---|
189 | }
|
---|
190 | public PercentValue CrossoverProbability {
|
---|
191 | get { return CrossoverProbabilityParameter.Value; }
|
---|
192 | set { CrossoverProbabilityParameter.Value = value; }
|
---|
193 | }
|
---|
194 | public ICrossover Crossover {
|
---|
195 | get { return CrossoverParameter.Value; }
|
---|
196 | set { CrossoverParameter.Value = value; }
|
---|
197 | }
|
---|
198 | public PercentValue MutationProbability {
|
---|
199 | get { return MutationProbabilityParameter.Value; }
|
---|
200 | set { MutationProbabilityParameter.Value = value; }
|
---|
201 | }
|
---|
202 | public IManipulator Mutator {
|
---|
203 | get { return MutatorParameter.Value; }
|
---|
204 | set { MutatorParameter.Value = value; }
|
---|
205 | }
|
---|
206 | public MultiAnalyzer Analyzer {
|
---|
207 | get { return AnalyzerParameter.Value; }
|
---|
208 | set { AnalyzerParameter.Value = value; }
|
---|
209 | }
|
---|
210 | public IntValue MaximumEvaluatedSolutions {
|
---|
211 | get { return MaximumEvaluatedSolutionsParameter.Value; }
|
---|
212 | set { MaximumEvaluatedSolutionsParameter.Value = value; }
|
---|
213 | }
|
---|
214 | public int NeighbourSize {
|
---|
215 | get { return NeighbourSizeParameter.Value.Value; }
|
---|
216 | set { NeighbourSizeParameter.Value.Value = value; }
|
---|
217 | }
|
---|
218 | public int MaximumNumberOfReplacedSolutions {
|
---|
219 | get { return MaximumNumberOfReplacedSolutionsParameter.Value.Value; }
|
---|
220 | set { MaximumNumberOfReplacedSolutionsParameter.Value.Value = value; }
|
---|
221 | }
|
---|
222 | public double NeighbourhoodSelectionProbability {
|
---|
223 | get { return NeighbourhoodSelectionProbabilityParameter.Value.Value; }
|
---|
224 | set { NeighbourhoodSelectionProbabilityParameter.Value.Value = value; }
|
---|
225 | }
|
---|
226 | #endregion
|
---|
227 |
|
---|
228 | #region constructors
|
---|
229 | public MOEADAlgorithmBase() {
|
---|
230 | Parameters.Add(new FixedValueParameter<IntValue>(SeedParameterName, "The random seed used to initialize the new pseudo random number generator.", new IntValue(0)));
|
---|
231 | Parameters.Add(new FixedValueParameter<BoolValue>(SetSeedRandomlyParameterName, "True if the random seed should be set to a random value, otherwise false.", new BoolValue(true)));
|
---|
232 | Parameters.Add(new ValueParameter<IntValue>(PopulationSizeParameterName, "The size of the population of solutions.", new IntValue(100)));
|
---|
233 | Parameters.Add(new ValueParameter<IntValue>(ResultPopulationSizeParameterName, "The size of the population of solutions.", new IntValue(100)));
|
---|
234 | Parameters.Add(new ValueParameter<PercentValue>(CrossoverProbabilityParameterName, "The probability that the crossover operator is applied.", new PercentValue(0.9)));
|
---|
235 | Parameters.Add(new ConstrainedValueParameter<ICrossover>(CrossoverParameterName, "The operator used to cross solutions."));
|
---|
236 | Parameters.Add(new ValueParameter<PercentValue>(MutationProbabilityParameterName, "The probability that the mutation operator is applied on a solution.", new PercentValue(0.25)));
|
---|
237 | Parameters.Add(new ConstrainedValueParameter<IManipulator>(MutatorParameterName, "The operator used to mutate solutions."));
|
---|
238 | Parameters.Add(new ValueParameter<MultiAnalyzer>("Analyzer", "The operator used to analyze each generation.", new MultiAnalyzer()));
|
---|
239 | Parameters.Add(new ValueParameter<IntValue>(MaximumEvaluatedSolutionsParameterName, "The maximum number of evaluated solutions (approximately).", new IntValue(100_000)));
|
---|
240 | Parameters.Add(new ValueParameter<IRandom>(RandomParameterName, new FastRandom()));
|
---|
241 | Parameters.Add(new FixedValueParameter<IntValue>(NeighbourSizeParameterName, new IntValue(20)));
|
---|
242 | Parameters.Add(new FixedValueParameter<IntValue>(MaximumNumberOfReplacedSolutionsParameterName, new IntValue(2)));
|
---|
243 | Parameters.Add(new FixedValueParameter<DoubleValue>(NeighbourhoodSelectionProbabilityParameterName, new DoubleValue(0.1)));
|
---|
244 | Parameters.Add(new FixedValueParameter<BoolValue>(NormalizeObjectivesParameterName, new BoolValue(true)));
|
---|
245 |
|
---|
246 | var functionTypeParameter = new ConstrainedValueParameter<StringValue>(FunctionTypeParameterName);
|
---|
247 | foreach (var s in new[] { "Chebyshev", "PBI", "Weighted Sum" }) {
|
---|
248 | functionTypeParameter.ValidValues.Add(new StringValue(s));
|
---|
249 | }
|
---|
250 | Parameters.Add(functionTypeParameter);
|
---|
251 | }
|
---|
252 |
|
---|
253 | protected MOEADAlgorithmBase(MOEADAlgorithmBase original, Cloner cloner) : base(original, cloner) {
|
---|
254 | functionType = original.functionType;
|
---|
255 | evaluatedSolutions = original.evaluatedSolutions;
|
---|
256 | previousExecutionState = original.previousExecutionState;
|
---|
257 |
|
---|
258 | if (original.IdealPoint != null) {
|
---|
259 | IdealPoint = (double[])original.IdealPoint.Clone();
|
---|
260 | }
|
---|
261 |
|
---|
262 | if (original.NadirPoint != null) {
|
---|
263 | NadirPoint = (double[])original.NadirPoint.Clone();
|
---|
264 | }
|
---|
265 |
|
---|
266 | if (original.lambda != null) {
|
---|
267 | lambda = (double[][])original.lambda.Clone();
|
---|
268 | }
|
---|
269 |
|
---|
270 | if (original.neighbourhood != null) {
|
---|
271 | neighbourhood = (int[][])original.neighbourhood.Clone();
|
---|
272 | }
|
---|
273 |
|
---|
274 | if (original.solutions != null) {
|
---|
275 | solutions = original.solutions.Select(cloner.Clone).ToArray();
|
---|
276 | }
|
---|
277 |
|
---|
278 | if (original.population != null) {
|
---|
279 | population = original.population.Select(cloner.Clone).ToArray();
|
---|
280 | }
|
---|
281 |
|
---|
282 | if (original.offspringPopulation != null) {
|
---|
283 | offspringPopulation = original.offspringPopulation.Select(cloner.Clone).ToArray();
|
---|
284 | }
|
---|
285 |
|
---|
286 | if (original.jointPopulation != null) {
|
---|
287 | jointPopulation = original.jointPopulation.Select(x => cloner.Clone(x)).ToArray();
|
---|
288 | }
|
---|
289 |
|
---|
290 | if (original.executionContext != null) {
|
---|
291 | executionContext = cloner.Clone(original.executionContext);
|
---|
292 | }
|
---|
293 |
|
---|
294 | if (original.globalScope != null) {
|
---|
295 | globalScope = cloner.Clone(original.globalScope);
|
---|
296 | }
|
---|
297 | }
|
---|
298 |
|
---|
299 |
|
---|
300 | [StorableHook(HookType.AfterDeserialization)]
|
---|
301 | private void AfterDeserialization() {
|
---|
302 | if (!Parameters.ContainsKey(NormalizeObjectivesParameterName)) {
|
---|
303 | Parameters.Add(new FixedValueParameter<BoolValue>(NormalizeObjectivesParameterName, new BoolValue(true)));
|
---|
304 | }
|
---|
305 | }
|
---|
306 |
|
---|
307 | [StorableConstructor]
|
---|
308 | protected MOEADAlgorithmBase(StorableConstructorFlag deserializing) : base(deserializing) { }
|
---|
309 | #endregion
|
---|
310 |
|
---|
311 | private void InitializePopulation(ExecutionContext executionContext, CancellationToken cancellationToken, IRandom random, bool[] maximization) {
|
---|
312 | var creator = Problem.SolutionCreator;
|
---|
313 | var evaluator = Problem.Evaluator;
|
---|
314 |
|
---|
315 | var dimensions = maximization.Length;
|
---|
316 | var populationSize = PopulationSize.Value;
|
---|
317 | population = new IMOEADSolution[populationSize];
|
---|
318 |
|
---|
319 | var parentScope = executionContext.Scope;
|
---|
320 | // first, create all individuals
|
---|
321 | for (int i = 0; i < populationSize; ++i) {
|
---|
322 | var childScope = new Scope(i.ToString()) { Parent = parentScope };
|
---|
323 | ExecuteOperation(executionContext, cancellationToken, executionContext.CreateChildOperation(creator, childScope));
|
---|
324 | parentScope.SubScopes.Add(childScope);
|
---|
325 | }
|
---|
326 |
|
---|
327 | // then, evaluate them and update qualities
|
---|
328 | for (int i = 0; i < populationSize; ++i) {
|
---|
329 | var childScope = parentScope.SubScopes[i];
|
---|
330 | ExecuteOperation(executionContext, cancellationToken, executionContext.CreateChildOperation(evaluator, childScope));
|
---|
331 |
|
---|
332 | var qualities = (DoubleArray)childScope.Variables["Qualities"].Value;
|
---|
333 | var solution = new MOEADSolution(childScope, dimensions, 0);
|
---|
334 | for (int j = 0; j < dimensions; ++j) {
|
---|
335 | solution.Qualities[j] = maximization[j] ? 1 - qualities[j] : qualities[j];
|
---|
336 | }
|
---|
337 | population[i] = solution;
|
---|
338 | }
|
---|
339 | }
|
---|
340 |
|
---|
341 | protected void InitializeAlgorithm(CancellationToken cancellationToken) {
|
---|
342 | var rand = RandomParameter.Value;
|
---|
343 | if (SetSeedRandomly) Seed = RandomSeedGenerator.GetSeed();
|
---|
344 | rand.Reset(Seed);
|
---|
345 |
|
---|
346 | bool[] maximization = ((BoolArray)Problem.MaximizationParameter.ActualValue).CloneAsArray();
|
---|
347 | var dimensions = maximization.Length;
|
---|
348 |
|
---|
349 | var populationSize = PopulationSize.Value;
|
---|
350 |
|
---|
351 | InitializePopulation(executionContext, cancellationToken, rand, maximization);
|
---|
352 | InitializeUniformWeights(rand, populationSize, dimensions);
|
---|
353 | InitializeNeighbourHood(lambda, populationSize, NeighbourSize);
|
---|
354 |
|
---|
355 | //IdealPoint = Enumerable.Repeat(double.MaxValue, dimensions).ToArray();
|
---|
356 | IdealPoint = new double[dimensions];
|
---|
357 | IdealPoint.UpdateIdeal(population);
|
---|
358 |
|
---|
359 | NadirPoint = Enumerable.Repeat(double.MinValue, dimensions).ToArray();
|
---|
360 | //NadirPoint = new double[dimensions];
|
---|
361 | NadirPoint.UpdateNadir(population);
|
---|
362 |
|
---|
363 | var functionTypeString = FunctionTypeParameter.Value.Value;
|
---|
364 | switch (functionTypeString) {
|
---|
365 | case "Chebyshev":
|
---|
366 | functionType = FunctionType.TCHE;
|
---|
367 | break;
|
---|
368 | case "PBI":
|
---|
369 | functionType = FunctionType.PBI;
|
---|
370 | break;
|
---|
371 | case "Weighted Sum":
|
---|
372 | functionType = FunctionType.AGG;
|
---|
373 | break;
|
---|
374 | }
|
---|
375 |
|
---|
376 | evaluatedSolutions = populationSize;
|
---|
377 | }
|
---|
378 |
|
---|
379 | protected override void Initialize(CancellationToken cancellationToken) {
|
---|
380 | globalScope = new Scope("Global Scope");
|
---|
381 | executionContext = new ExecutionContext(null, this, globalScope);
|
---|
382 |
|
---|
383 | // set the execution context for parameters to allow lookup
|
---|
384 | foreach (var parameter in Problem.Parameters.OfType<IValueParameter>()) {
|
---|
385 | // we need all of these in order for the wiring of the operators to work
|
---|
386 | globalScope.Variables.Add(new Variable(parameter.Name, parameter.Value));
|
---|
387 | }
|
---|
388 | globalScope.Variables.Add(new Variable("Results", Results)); // make results available as a parameter for analyzers etc.
|
---|
389 |
|
---|
390 | base.Initialize(cancellationToken);
|
---|
391 | }
|
---|
392 |
|
---|
393 | public override bool SupportsPause => true;
|
---|
394 |
|
---|
395 | protected void InitializeUniformWeights(IRandom random, int populationSize, int dimensions) {
|
---|
396 | lambda = Enumerable.Range(0, populationSize).Select(_ => GenerateSample(random, dimensions)).ToArray();
|
---|
397 | }
|
---|
398 |
|
---|
399 | // implements random number generation from https://en.wikipedia.org/wiki/Dirichlet_distribution#Random_number_generation
|
---|
400 | private double[] GenerateSample(IRandom random, int dim) {
|
---|
401 | var sum = 0d;
|
---|
402 | var sample = new double[dim];
|
---|
403 | for (int i = 0; i < dim; ++i) {
|
---|
404 | sample[i] = GammaDistributedRandom.NextDouble(random, 1, 1);
|
---|
405 | sum += sample[i];
|
---|
406 | }
|
---|
407 | for (int i = 0; i < dim; ++i) {
|
---|
408 | sample[i] /= sum;
|
---|
409 | }
|
---|
410 | return sample;
|
---|
411 | }
|
---|
412 |
|
---|
413 | protected void InitializeNeighbourHood(double[][] lambda, int populationSize, int neighbourSize) {
|
---|
414 | neighbourhood = new int[populationSize][];
|
---|
415 |
|
---|
416 | var x = new double[populationSize];
|
---|
417 | var idx = new int[populationSize];
|
---|
418 |
|
---|
419 | for (int i = 0; i < populationSize; ++i) {
|
---|
420 | for (int j = 0; j < populationSize; ++j) {
|
---|
421 | x[j] = MOEADUtil.EuclideanDistance(lambda[i], lambda[j]);
|
---|
422 | idx[j] = j;
|
---|
423 | }
|
---|
424 |
|
---|
425 | MOEADUtil.MinFastSort(x, idx, populationSize, neighbourSize);
|
---|
426 | neighbourhood[i] = (int[])idx.Clone();
|
---|
427 | }
|
---|
428 | }
|
---|
429 |
|
---|
430 | protected NeighborType ChooseNeighborType(IRandom random, double neighbourhoodSelectionProbability) {
|
---|
431 | return random.NextDouble() < neighbourhoodSelectionProbability
|
---|
432 | ? NeighborType.NEIGHBOR
|
---|
433 | : NeighborType.POPULATION;
|
---|
434 | }
|
---|
435 |
|
---|
436 | protected IList<IMOEADSolution> ParentSelection(IRandom random, int subProblemId, NeighborType neighbourType) {
|
---|
437 | List<int> matingPool = MatingSelection(random, subProblemId, 2, neighbourType);
|
---|
438 |
|
---|
439 | var parents = new IMOEADSolution[3];
|
---|
440 |
|
---|
441 | parents[0] = population[matingPool[0]];
|
---|
442 | parents[1] = population[matingPool[1]];
|
---|
443 | parents[2] = population[subProblemId];
|
---|
444 |
|
---|
445 | return parents;
|
---|
446 | }
|
---|
447 |
|
---|
448 | protected List<int> MatingSelection(IRandom random, int subproblemId, int numberOfSolutionsToSelect, NeighborType neighbourType) {
|
---|
449 | int populationSize = PopulationSize.Value;
|
---|
450 |
|
---|
451 | var listOfSolutions = new List<int>(numberOfSolutionsToSelect);
|
---|
452 |
|
---|
453 | int neighbourSize = neighbourhood[subproblemId].Length;
|
---|
454 | while (listOfSolutions.Count < numberOfSolutionsToSelect) {
|
---|
455 | var selectedSolution = neighbourType == NeighborType.NEIGHBOR
|
---|
456 | ? neighbourhood[subproblemId][random.Next(neighbourSize)]
|
---|
457 | : random.Next(populationSize);
|
---|
458 |
|
---|
459 | bool flag = true;
|
---|
460 | foreach (int individualId in listOfSolutions) {
|
---|
461 | if (individualId == selectedSolution) {
|
---|
462 | flag = false;
|
---|
463 | break;
|
---|
464 | }
|
---|
465 | }
|
---|
466 |
|
---|
467 | if (flag) {
|
---|
468 | listOfSolutions.Add(selectedSolution);
|
---|
469 | }
|
---|
470 | }
|
---|
471 |
|
---|
472 | return listOfSolutions;
|
---|
473 | }
|
---|
474 |
|
---|
475 | protected void UpdateNeighbourHood(IRandom random, IMOEADSolution individual, int subProblemId, NeighborType neighbourType, int maximumNumberOfReplacedSolutions, bool normalizeObjectives = false) {
|
---|
476 | int replacedSolutions = 0;
|
---|
477 | int size = neighbourType == NeighborType.NEIGHBOR ? NeighbourSize : population.Length;
|
---|
478 |
|
---|
479 | foreach (var i in Enumerable.Range(0, size).Shuffle(random)) {
|
---|
480 | int k = neighbourType == NeighborType.NEIGHBOR ? neighbourhood[subProblemId][i] : i;
|
---|
481 |
|
---|
482 | double f1 = CalculateFitness(population[k].Qualities, lambda[k], normalizeObjectives);
|
---|
483 | double f2 = CalculateFitness(individual.Qualities, lambda[k], normalizeObjectives);
|
---|
484 |
|
---|
485 | if (f2 < f1) {
|
---|
486 | population[k] = individual;
|
---|
487 | replacedSolutions++;
|
---|
488 | }
|
---|
489 |
|
---|
490 | if (replacedSolutions >= maximumNumberOfReplacedSolutions) {
|
---|
491 | return;
|
---|
492 | }
|
---|
493 | }
|
---|
494 | }
|
---|
495 |
|
---|
496 | private double CalculateFitness(double[] qualities, double[] lambda, bool normalizeObjectives = false) {
|
---|
497 | int dim = qualities.Length;
|
---|
498 | switch (functionType) {
|
---|
499 | case FunctionType.TCHE: {
|
---|
500 | double maxFun = double.MinValue;
|
---|
501 |
|
---|
502 | for (int n = 0; n < dim; n++) {
|
---|
503 | // deal with NaN and Infinity
|
---|
504 | var q = qualities[n];
|
---|
505 | if (double.IsNaN(q) || double.IsInfinity(q)) {
|
---|
506 | q = NadirPoint[n];
|
---|
507 | }
|
---|
508 | q -= IdealPoint[n];
|
---|
509 |
|
---|
510 | if (normalizeObjectives) {
|
---|
511 | q /= NadirPoint[n] - IdealPoint[n];
|
---|
512 | }
|
---|
513 |
|
---|
514 | var l = lambda[n].IsAlmost(0) ? 1e-4 : lambda[n];
|
---|
515 | var feval = l * Math.Abs(q);
|
---|
516 |
|
---|
517 | if (feval > maxFun) {
|
---|
518 | maxFun = feval;
|
---|
519 | }
|
---|
520 | }
|
---|
521 |
|
---|
522 | return maxFun;
|
---|
523 | }
|
---|
524 | case FunctionType.AGG: {
|
---|
525 | double sum = 0.0;
|
---|
526 | for (int n = 0; n < dim; n++) {
|
---|
527 | sum += lambda[n] * qualities[n];
|
---|
528 | }
|
---|
529 | return sum;
|
---|
530 | }
|
---|
531 | case FunctionType.PBI: {
|
---|
532 | double d1, d2, nl;
|
---|
533 | double theta = 5.0;
|
---|
534 | int dimensions = dim;
|
---|
535 |
|
---|
536 | d1 = d2 = nl = 0.0;
|
---|
537 |
|
---|
538 | for (int i = 0; i < dimensions; i++) {
|
---|
539 | d1 += (qualities[i] - IdealPoint[i]) * lambda[i];
|
---|
540 | nl += Math.Pow(lambda[i], 2.0);
|
---|
541 | }
|
---|
542 | nl = Math.Sqrt(nl);
|
---|
543 | d1 = Math.Abs(d1) / nl;
|
---|
544 |
|
---|
545 | for (int i = 0; i < dimensions; i++) {
|
---|
546 | d2 += Math.Pow((qualities[i] - IdealPoint[i]) - d1 * (lambda[i] / nl), 2.0);
|
---|
547 | }
|
---|
548 | d2 = Math.Sqrt(d2);
|
---|
549 | return d1 + theta * d2;
|
---|
550 | }
|
---|
551 | default: {
|
---|
552 | throw new ArgumentException($"Unknown function type: {functionType}");
|
---|
553 | }
|
---|
554 | }
|
---|
555 | }
|
---|
556 |
|
---|
557 | public IList<IMOEADSolution> GetResult(IRandom random) {
|
---|
558 | var populationSize = PopulationSize.Value;
|
---|
559 | var resultPopulationSize = ResultPopulationSize.Value;
|
---|
560 |
|
---|
561 | if (populationSize > resultPopulationSize) {
|
---|
562 | return MOEADUtil.GetSubsetOfEvenlyDistributedSolutions(random, population, resultPopulationSize);
|
---|
563 | } else {
|
---|
564 | return population;
|
---|
565 | }
|
---|
566 | }
|
---|
567 |
|
---|
568 | protected void UpdateParetoFronts() {
|
---|
569 | var qualities = population.Select(x => Enumerable.Range(0, NadirPoint.Length).Select(i => x.Qualities[i] / NadirPoint[i]).ToArray()).ToArray();
|
---|
570 | var maximization = Enumerable.Repeat(false, IdealPoint.Length).ToArray(); // MOEA/D minimizes everything internally
|
---|
571 | var pf = DominationCalculator<IMOEADSolution>.CalculateBestParetoFront(population, qualities, maximization);
|
---|
572 |
|
---|
573 | var n = (int)EnumerableExtensions.BinomialCoefficient(IdealPoint.Length, 2);
|
---|
574 | var hypervolumes = new DoubleMatrix(n == 1 ? 1 : n + 1, 2) { ColumnNames = new[] { "PF hypervolume", "PF size" } };
|
---|
575 | hypervolumes[0, 0] = Hypervolume.Calculate(pf.Select(x => x.Item2), Enumerable.Repeat(1d, NadirPoint.Length).ToArray(), maximization);
|
---|
576 | hypervolumes[0, 1] = pf.Count;
|
---|
577 | var elementNames = new List<string>() { "Pareto Front" };
|
---|
578 |
|
---|
579 | ResultCollection results;
|
---|
580 | if (Results.ContainsKey("Hypervolume Analysis")) {
|
---|
581 | results = (ResultCollection)Results["Hypervolume Analysis"].Value;
|
---|
582 | } else {
|
---|
583 | results = new ResultCollection();
|
---|
584 | Results.AddOrUpdateResult("Hypervolume Analysis", results);
|
---|
585 | }
|
---|
586 |
|
---|
587 | ScatterPlot sp;
|
---|
588 | if (IdealPoint.Length == 2) {
|
---|
589 | var points = pf.Select(x => new Point2D<double>(x.Item2[0], x.Item2[1]));
|
---|
590 | var r = OnlinePearsonsRCalculator.Calculate(points.Select(x => x.X), points.Select(x => x.Y), out OnlineCalculatorError error);
|
---|
591 | if (error != OnlineCalculatorError.None) { r = double.NaN; }
|
---|
592 | var resultName = "Pareto Front Analysis ";
|
---|
593 | if (!results.ContainsKey(resultName)) {
|
---|
594 | sp = new ScatterPlot() {
|
---|
595 | VisualProperties = {
|
---|
596 | XAxisMinimumAuto = false, XAxisMinimumFixedValue = 0d, XAxisMaximumAuto = false, XAxisMaximumFixedValue = 1d,
|
---|
597 | YAxisMinimumAuto = false, YAxisMinimumFixedValue = 0d, YAxisMaximumAuto = false, YAxisMaximumFixedValue = 1d
|
---|
598 | }
|
---|
599 | };
|
---|
600 | sp.Rows.Add(new ScatterPlotDataRow(resultName, "", points) { VisualProperties = { PointSize = 8 } });
|
---|
601 | results.AddOrUpdateResult(resultName, sp);
|
---|
602 | } else {
|
---|
603 | sp = (ScatterPlot)results[resultName].Value;
|
---|
604 | sp.Rows[resultName].Points.Replace(points);
|
---|
605 | }
|
---|
606 | sp.Name = $"Dimensions [0, 1], correlation: {r.ToString("N2")}";
|
---|
607 | } else if (IdealPoint.Length > 2) {
|
---|
608 | var indices = Enumerable.Range(0, IdealPoint.Length).ToArray();
|
---|
609 | var visualProperties = new ScatterPlotDataRowVisualProperties { PointSize = 8, Color = Color.LightGray };
|
---|
610 | var combinations = indices.Combinations(2).ToArray();
|
---|
611 | var maximization2d = new[] { false, false };
|
---|
612 | var solutions2d = pf.Select(x => x.Item1).ToArray();
|
---|
613 | for (int i = 0; i < combinations.Length; ++i) {
|
---|
614 | var c = combinations[i].ToArray();
|
---|
615 |
|
---|
616 | // calculate the hypervolume in the 2d coordinate space
|
---|
617 | var reference2d = new[] { 1d, 1d };
|
---|
618 | var qualities2d = pf.Select(x => new[] { x.Item2[c[0]], x.Item2[c[1]] }).ToArray();
|
---|
619 | var pf2d = DominationCalculator<IMOEADSolution>.CalculateBestParetoFront(solutions2d, qualities2d, maximization2d);
|
---|
620 |
|
---|
621 | hypervolumes[i + 1, 0] = pf2d.Count > 0 ? Hypervolume.Calculate(pf2d.Select(x => x.Item2), reference2d, maximization2d) : 0d;
|
---|
622 | hypervolumes[i + 1, 1] = pf2d.Count;
|
---|
623 |
|
---|
624 | var resultName = $"Pareto Front Analysis [{c[0]}, {c[1]}]";
|
---|
625 | elementNames.Add(resultName);
|
---|
626 |
|
---|
627 | var points = pf.Select(x => new Point2D<double>(x.Item2[c[0]], x.Item2[c[1]]));
|
---|
628 | var pf2dPoints = pf2d.Select(x => new Point2D<double>(x.Item2[0], x.Item2[1]));
|
---|
629 |
|
---|
630 | if (!results.ContainsKey(resultName)) {
|
---|
631 | sp = new ScatterPlot() {
|
---|
632 | VisualProperties = {
|
---|
633 | XAxisMinimumAuto = false, XAxisMinimumFixedValue = 0d, XAxisMaximumAuto = false, XAxisMaximumFixedValue = 1d,
|
---|
634 | YAxisMinimumAuto = false, YAxisMinimumFixedValue = 0d, YAxisMaximumAuto = false, YAxisMaximumFixedValue = 1d
|
---|
635 | }
|
---|
636 | };
|
---|
637 | sp.Rows.Add(new ScatterPlotDataRow("Pareto Front", "", points) { VisualProperties = visualProperties });
|
---|
638 | sp.Rows.Add(new ScatterPlotDataRow($"Pareto Front [{c[0]}, {c[1]}]", "", pf2dPoints) { VisualProperties = { PointSize = 10, Color = Color.OrangeRed } });
|
---|
639 | results.AddOrUpdateResult(resultName, sp);
|
---|
640 | } else {
|
---|
641 | sp = (ScatterPlot)results[resultName].Value;
|
---|
642 | sp.Rows["Pareto Front"].Points.Replace(points);
|
---|
643 | sp.Rows[$"Pareto Front [{c[0]}, {c[1]}]"].Points.Replace(pf2dPoints);
|
---|
644 | }
|
---|
645 | var r = OnlinePearsonsRCalculator.Calculate(points.Select(x => x.X), points.Select(x => x.Y), out OnlineCalculatorError error);
|
---|
646 | var r2 = r * r;
|
---|
647 | sp.Name = $"Pareto Front [{c[0]}, {c[1]}], correlation: {r2.ToString("N2")}";
|
---|
648 | }
|
---|
649 | }
|
---|
650 | hypervolumes.RowNames = elementNames;
|
---|
651 | results.AddOrUpdateResult("Hypervolumes", hypervolumes);
|
---|
652 | }
|
---|
653 |
|
---|
654 | #region operator wiring and events
|
---|
655 | protected void ExecuteOperation(ExecutionContext executionContext, CancellationToken cancellationToken, IOperation operation) {
|
---|
656 | Stack<IOperation> executionStack = new Stack<IOperation>();
|
---|
657 | executionStack.Push(operation);
|
---|
658 | while (executionStack.Count > 0) {
|
---|
659 | cancellationToken.ThrowIfCancellationRequested();
|
---|
660 | IOperation next = executionStack.Pop();
|
---|
661 | if (next is OperationCollection) {
|
---|
662 | OperationCollection coll = (OperationCollection)next;
|
---|
663 | for (int i = coll.Count - 1; i >= 0; i--)
|
---|
664 | if (coll[i] != null) executionStack.Push(coll[i]);
|
---|
665 | } else if (next is IAtomicOperation) {
|
---|
666 | IAtomicOperation op = (IAtomicOperation)next;
|
---|
667 | next = op.Operator.Execute((IExecutionContext)op, cancellationToken);
|
---|
668 | if (next != null) executionStack.Push(next);
|
---|
669 | }
|
---|
670 | }
|
---|
671 | }
|
---|
672 |
|
---|
673 | private void UpdateAnalyzers() {
|
---|
674 | Analyzer.Operators.Clear();
|
---|
675 | if (Problem != null) {
|
---|
676 | foreach (IAnalyzer analyzer in Problem.Operators.OfType<IAnalyzer>()) {
|
---|
677 | foreach (IScopeTreeLookupParameter param in analyzer.Parameters.OfType<IScopeTreeLookupParameter>())
|
---|
678 | param.Depth = 1;
|
---|
679 | Analyzer.Operators.Add(analyzer, analyzer.EnabledByDefault);
|
---|
680 | }
|
---|
681 | }
|
---|
682 | }
|
---|
683 |
|
---|
684 | private void UpdateCrossovers() {
|
---|
685 | ICrossover oldCrossover = CrossoverParameter.Value;
|
---|
686 | CrossoverParameter.ValidValues.Clear();
|
---|
687 | ICrossover defaultCrossover = Problem.Operators.OfType<ICrossover>().FirstOrDefault();
|
---|
688 |
|
---|
689 | foreach (ICrossover crossover in Problem.Operators.OfType<ICrossover>().OrderBy(x => x.Name))
|
---|
690 | CrossoverParameter.ValidValues.Add(crossover);
|
---|
691 |
|
---|
692 | if (oldCrossover != null) {
|
---|
693 | ICrossover crossover = CrossoverParameter.ValidValues.FirstOrDefault(x => x.GetType() == oldCrossover.GetType());
|
---|
694 | if (crossover != null) CrossoverParameter.Value = crossover;
|
---|
695 | else oldCrossover = null;
|
---|
696 | }
|
---|
697 | if (oldCrossover == null && defaultCrossover != null)
|
---|
698 | CrossoverParameter.Value = defaultCrossover;
|
---|
699 | }
|
---|
700 |
|
---|
701 | private void UpdateMutators() {
|
---|
702 | IManipulator oldMutator = MutatorParameter.Value;
|
---|
703 | MutatorParameter.ValidValues.Clear();
|
---|
704 | IManipulator defaultMutator = Problem.Operators.OfType<IManipulator>().FirstOrDefault();
|
---|
705 |
|
---|
706 | foreach (IManipulator mutator in Problem.Operators.OfType<IManipulator>().OrderBy(x => x.Name))
|
---|
707 | MutatorParameter.ValidValues.Add(mutator);
|
---|
708 |
|
---|
709 | if (oldMutator != null) {
|
---|
710 | IManipulator mutator = MutatorParameter.ValidValues.FirstOrDefault(x => x.GetType() == oldMutator.GetType());
|
---|
711 | if (mutator != null) MutatorParameter.Value = mutator;
|
---|
712 | else oldMutator = null;
|
---|
713 | }
|
---|
714 |
|
---|
715 | if (oldMutator == null && defaultMutator != null)
|
---|
716 | MutatorParameter.Value = defaultMutator;
|
---|
717 | }
|
---|
718 |
|
---|
719 | protected override void OnProblemChanged() {
|
---|
720 | UpdateCrossovers();
|
---|
721 | UpdateMutators();
|
---|
722 | UpdateAnalyzers();
|
---|
723 | base.OnProblemChanged();
|
---|
724 | }
|
---|
725 |
|
---|
726 | protected override void OnExecutionStateChanged() {
|
---|
727 | previousExecutionState = executionState;
|
---|
728 | executionState = ExecutionState;
|
---|
729 | base.OnExecutionStateChanged();
|
---|
730 | }
|
---|
731 |
|
---|
732 | public void ClearState() {
|
---|
733 | solutions = null;
|
---|
734 | population = null;
|
---|
735 | offspringPopulation = null;
|
---|
736 | jointPopulation = null;
|
---|
737 | lambda = null;
|
---|
738 | neighbourhood = null;
|
---|
739 | if (executionContext != null && executionContext.Scope != null) {
|
---|
740 | executionContext.Scope.SubScopes.Clear();
|
---|
741 | }
|
---|
742 | }
|
---|
743 |
|
---|
744 | protected override void OnStopped() {
|
---|
745 | ClearState();
|
---|
746 | base.OnStopped();
|
---|
747 | }
|
---|
748 | #endregion
|
---|
749 | }
|
---|
750 | }
|
---|