1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using HEAL.Attic;
|
---|
23 | using HeuristicLab.Common;
|
---|
24 | using HeuristicLab.Core;
|
---|
25 | using HeuristicLab.Data;
|
---|
26 | using HeuristicLab.Random;
|
---|
27 | using System.Linq;
|
---|
28 | using CancellationToken = System.Threading.CancellationToken;
|
---|
29 |
|
---|
30 | namespace HeuristicLab.Algorithms.MOEAD {
|
---|
31 | [Item("Multi-objective Evolutionary Algorithm based on Decomposition (MOEA/D)", "MOEA/D implementation adapted from jMetal.")]
|
---|
32 | [Creatable(CreatableAttribute.Categories.PopulationBasedAlgorithms, Priority = 125)]
|
---|
33 | [StorableType("FE39AD23-B3BF-4368-BB79-FE5BF4C36272")]
|
---|
34 | public class MOEADAlgorithm : MOEADAlgorithmBase {
|
---|
35 | public MOEADAlgorithm() { }
|
---|
36 |
|
---|
37 | protected MOEADAlgorithm(MOEADAlgorithm original, Cloner cloner) : base(original, cloner) { }
|
---|
38 |
|
---|
39 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
40 | return new MOEADAlgorithm(this, cloner);
|
---|
41 | }
|
---|
42 |
|
---|
43 | [StorableConstructor]
|
---|
44 | protected MOEADAlgorithm(StorableConstructorFlag deserializing) : base(deserializing) { }
|
---|
45 |
|
---|
46 | protected override void Run(CancellationToken cancellationToken) {
|
---|
47 | if (previousExecutionState != ExecutionState.Paused) {
|
---|
48 | InitializeAlgorithm(cancellationToken);
|
---|
49 | }
|
---|
50 |
|
---|
51 | var populationSize = PopulationSize.Value;
|
---|
52 | bool[] maximization = ((BoolArray)Problem.MaximizationParameter.ActualValue).CloneAsArray();
|
---|
53 | var maximumEvaluatedSolutions = MaximumEvaluatedSolutions.Value;
|
---|
54 | var crossover = Crossover;
|
---|
55 | var crossoverProbability = CrossoverProbability.Value;
|
---|
56 | var mutator = Mutator;
|
---|
57 | var mutationProbability = MutationProbability.Value;
|
---|
58 | var evaluator = Problem.Evaluator;
|
---|
59 | var analyzer = Analyzer;
|
---|
60 | var neighbourhoodSelectionProbability = NeighbourhoodSelectionProbability;
|
---|
61 | var rand = RandomParameter.Value;
|
---|
62 | var normalizeObjectives = NormalizeObjectives;
|
---|
63 | var maximumNumberOfReplacedSolutions = MaximumNumberOfReplacedSolutions;
|
---|
64 |
|
---|
65 | // cancellation token for the inner operations which should not be immediately cancelled
|
---|
66 | var innerToken = new CancellationToken();
|
---|
67 |
|
---|
68 | while (evaluatedSolutions < maximumEvaluatedSolutions && !cancellationToken.IsCancellationRequested) {
|
---|
69 | foreach (var subProblemId in Enumerable.Range(0, populationSize).Shuffle(rand)) {
|
---|
70 | var neighbourType = ChooseNeighborType(rand, neighbourhoodSelectionProbability);
|
---|
71 | var mates = MatingSelection(rand, subProblemId, 2, neighbourType); // select parents
|
---|
72 | var s1 = (IScope)population[mates[0]].Individual.Clone();
|
---|
73 | var s2 = (IScope)population[mates[1]].Individual.Clone();
|
---|
74 | s1.Parent = s2.Parent = globalScope;
|
---|
75 |
|
---|
76 | IScope childScope = null;
|
---|
77 | // crossover
|
---|
78 | if (rand.NextDouble() < crossoverProbability) {
|
---|
79 | childScope = new Scope($"{mates[0]}+{mates[1]}") { Parent = executionContext.Scope };
|
---|
80 | childScope.SubScopes.Add(s1);
|
---|
81 | childScope.SubScopes.Add(s2);
|
---|
82 | var op = executionContext.CreateChildOperation(crossover, childScope);
|
---|
83 | ExecuteOperation(executionContext, innerToken, op);
|
---|
84 | childScope.SubScopes.Clear();
|
---|
85 | }
|
---|
86 |
|
---|
87 | // mutation
|
---|
88 | if (rand.NextDouble() < mutationProbability) {
|
---|
89 | childScope = childScope ?? s1;
|
---|
90 | var op = executionContext.CreateChildOperation(mutator, childScope);
|
---|
91 | ExecuteOperation(executionContext, innerToken, op);
|
---|
92 | }
|
---|
93 |
|
---|
94 | // evaluation
|
---|
95 | if (childScope != null) {
|
---|
96 | var op = executionContext.CreateChildOperation(evaluator, childScope);
|
---|
97 | ExecuteOperation(executionContext, innerToken, op);
|
---|
98 | var qualities = (DoubleArray)childScope.Variables["Qualities"].Value;
|
---|
99 | var childSolution = new MOEADSolution(childScope, maximization.Length, 0);
|
---|
100 | // set child qualities
|
---|
101 | for (int j = 0; j < maximization.Length; ++j) {
|
---|
102 | childSolution.Qualities[j] = maximization[j] ? 1 - qualities[j] : qualities[j];
|
---|
103 | }
|
---|
104 | IdealPoint.UpdateIdeal(childSolution.Qualities);
|
---|
105 | NadirPoint.UpdateNadir(childSolution.Qualities);
|
---|
106 | // update neighbourhood will insert the child into the population
|
---|
107 | UpdateNeighbourHood(rand, childSolution, subProblemId, neighbourType, maximumNumberOfReplacedSolutions, normalizeObjectives);
|
---|
108 |
|
---|
109 | ++evaluatedSolutions;
|
---|
110 | } else {
|
---|
111 | // no crossover or mutation were applied, a child was not produced, do nothing
|
---|
112 | }
|
---|
113 |
|
---|
114 | if (evaluatedSolutions >= maximumEvaluatedSolutions) {
|
---|
115 | break;
|
---|
116 | }
|
---|
117 | }
|
---|
118 | // run analyzer
|
---|
119 | var analyze = executionContext.CreateChildOperation(analyzer, globalScope);
|
---|
120 | ExecuteOperation(executionContext, innerToken, analyze);
|
---|
121 |
|
---|
122 | UpdateParetoFronts();
|
---|
123 |
|
---|
124 | Results.AddOrUpdateResult("IdealPoint", new DoubleArray(IdealPoint));
|
---|
125 | Results.AddOrUpdateResult("NadirPoint", new DoubleArray(NadirPoint));
|
---|
126 | Results.AddOrUpdateResult("Evaluated Solutions", new IntValue(evaluatedSolutions));
|
---|
127 |
|
---|
128 | globalScope.SubScopes.Replace(population.Select(x => (IScope)x.Individual));
|
---|
129 | }
|
---|
130 | }
|
---|
131 | }
|
---|
132 | }
|
---|