Free cookie consent management tool by TermsFeed Policy Generator

source: branches/2974_Constants_Optimization/UnitTests/ConstantsOptimizationTests.cs @ 16591

Last change on this file since 16591 was 16507, checked in by mkommend, 6 years ago

#2974: First stable version of new CoOp.

File size: 9.9 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
23using HeuristicLab.Problems.DataAnalysis;
24using HeuristicLab.Problems.DataAnalysis.Symbolic;
25using HeuristicLab.Problems.DataAnalysis.Symbolic.ConstantsOptimization;
26using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression;
27
28
29using HeuristicLab.Problems.Instances.DataAnalysis;
30using Microsoft.VisualStudio.TestTools.UnitTesting;
31
32namespace UnitTests {
33  [TestClass]
34  public class ConstantsOptimizationTests {
35    private static readonly int seed = 1234;
36
37
38    public static void CompareConstantsOptimizationResults(IRegressionProblemData problemData, ISymbolicExpressionTree tree) {
39      var applyLinearScaling = true;
40      var old_optimizedTree = (ISymbolicExpressionTree)tree.Clone();
41      var old_result = SymbolicRegressionConstantOptimizationEvaluator.OptimizeConstants(
42        new SymbolicDataAnalysisExpressionTreeLinearInterpreter(),
43        old_optimizedTree, problemData, problemData.TrainingIndices, applyLinearScaling, maxIterations: 10);
44
45
46      var new_optimizedTree = (ISymbolicExpressionTree)tree.Clone();
47      var new_result = LMConstantsOptimizer.OptimizeConstants(new_optimizedTree, problemData.Dataset, problemData.TargetVariable, problemData.TrainingIndices, applyLinearScaling, maxIterations: 10);
48
49      //check R² values
50      //Assert.AreEqual(old_result, new_result);
51
52      //check numeric values of constants
53      var old_constants = Util.ExtractConstants(old_optimizedTree, applyLinearScaling);
54      var new_constants = Util.ExtractConstants(new_optimizedTree, applyLinearScaling);
55      //Assert.IsTrue(old_constants.SequenceEqual(new_constants));
56
57      for (int i = 0; i < old_constants.Length; i++) {
58        Assert.AreEqual(old_constants[i], new_constants[i], 0.00000001);
59      }
60    }
61
62
63
64    [TestMethod]
65    [TestCategory("Problems.DataAnalysis.Symbolic.Regression")]
66    [TestProperty("Time", "short")]
67    public void ConstantsOptimizationTest_Nguyen01() {
68      var problemData = new NguyenFunctionOne(seed).GenerateRegressionData();
69      var modelTemplate = "({0})* CUBE(X) + ({1}) * SQR(X) + ({2}) * X";
70
71      string modelString;
72      object[] constants;
73      ISymbolicExpressionTree modelTree;
74
75      constants = new object[] { 1.0, 2.0, 3.0 };
76      modelString = string.Format(modelTemplate, constants);
77      modelTree = new InfixExpressionParser().Parse(modelString);
78      CompareConstantsOptimizationResults(problemData, modelTree);
79
80      constants = new object[] { 5.0, -2.0, 500.362 };
81      modelString = string.Format(modelTemplate, constants);
82      modelTree = new InfixExpressionParser().Parse(modelString);
83      CompareConstantsOptimizationResults(problemData, modelTree);
84
85      constants = new object[] { -6987.25, 1, -888 };
86      modelString = string.Format(modelTemplate, constants);
87      modelTree = new InfixExpressionParser().Parse(modelString);
88      CompareConstantsOptimizationResults(problemData, modelTree);
89    }
90
91    [TestMethod]
92    [TestCategory("Problems.DataAnalysis.Symbolic.Regression")]
93    [TestProperty("Time", "short")]
94    public void ConstantsOptimizationTest_Nguyen03() {
95      var problemData = new NguyenFunctionThree(seed).GenerateRegressionData();
96      var modelTemplate = "({0})* X*X*X*X*X + ({1}) * X*X*X*X + ({2}) * X*X*X + ({3}) * X*X + ({4}) * X + {5}";
97
98      string modelString;
99      object[] constants;
100      ISymbolicExpressionTree modelTree;
101
102      constants = new object[] { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 };
103      modelString = string.Format(modelTemplate, constants);
104      modelTree = new InfixExpressionParser().Parse(modelString);
105      CompareConstantsOptimizationResults(problemData, modelTree);
106
107      constants = new object[] { 5.0, -2.0, 500.362, -5646, 0.0001, 1234 };
108      modelString = string.Format(modelTemplate, constants);
109      modelTree = new InfixExpressionParser().Parse(modelString);
110      CompareConstantsOptimizationResults(problemData, modelTree);
111
112      constants = new object[] { -6987.25, 1, -888, +888, -1, 6987.25, 0, 25 };
113      modelString = string.Format(modelTemplate, constants);
114      modelTree = new InfixExpressionParser().Parse(modelString);
115      CompareConstantsOptimizationResults(problemData, modelTree);
116    }
117
118    [TestMethod]
119    [TestCategory("Problems.DataAnalysis.Symbolic.Regression")]
120    [TestProperty("Time", "short")]
121    public void ConstantsOptimizationTest_Nguyen05() {
122      var problemData = new NguyenFunctionFive(seed).GenerateRegressionData();
123      var modelTemplate = "({0}) * SIN(({1})*X*X) * COS(({2})*X) + ({3})";
124
125      string modelString;
126      object[] constants;
127      ISymbolicExpressionTree modelTree;
128
129      constants = new object[] { 1.0, 2.0, 3.0, 4.0 };
130      modelString = string.Format(modelTemplate, constants);
131      modelTree = new InfixExpressionParser().Parse(modelString);
132      CompareConstantsOptimizationResults(problemData, modelTree);
133
134      constants = new object[] { 5.0, -2.0, -3.0, 5.0 };
135      modelString = string.Format(modelTemplate, constants);
136      modelTree = new InfixExpressionParser().Parse(modelString);
137      CompareConstantsOptimizationResults(problemData, modelTree);
138
139      constants = new object[] { 0.5, 1, 1, 3 };
140      modelString = string.Format(modelTemplate, constants);
141      modelTree = new InfixExpressionParser().Parse(modelString);
142      CompareConstantsOptimizationResults(problemData, modelTree);
143    }
144
145    [TestMethod]
146    [TestCategory("Problems.DataAnalysis.Symbolic.Regression")]
147    [TestProperty("Time", "short")]
148    public void ConstantsOptimizationTest_Nguyen07() {
149      var problemData = new NguyenFunctionFive(seed).GenerateRegressionData();
150      var modelTemplate = "({0}) * LOG(({1})*X + ({2})) + ({3}) * LOG(({4})*X*X + ({5})) + ({6})";
151
152      string modelString;
153      object[] constants;
154      ISymbolicExpressionTree modelTree;
155
156      constants = new object[] { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0 };
157      modelString = string.Format(modelTemplate, constants);
158      modelTree = new InfixExpressionParser().Parse(modelString);
159      CompareConstantsOptimizationResults(problemData, modelTree);
160
161      constants = new object[] { 5.0, 2.0, 500.362, -5646, 0.0001, 1234, 421 };
162      modelString = string.Format(modelTemplate, constants);
163      modelTree = new InfixExpressionParser().Parse(modelString);
164      CompareConstantsOptimizationResults(problemData, modelTree);
165
166      constants = new object[] { -6987.25, 1, 888, +888, -1, 6987.25, 0, 25 };
167      modelString = string.Format(modelTemplate, constants);
168      modelTree = new InfixExpressionParser().Parse(modelString);
169      CompareConstantsOptimizationResults(problemData, modelTree);
170    }
171
172    [TestMethod]
173    [TestCategory("Problems.DataAnalysis.Symbolic.Regression")]
174    [TestProperty("Time", "short")]
175    public void ConstantsOptimizationTest_Nguyen08() {
176      var problemData = new NguyenFunctionEight(seed).GenerateRegressionData();
177      var modelTemplate = "({0})* SQRT(({1}) * X) + ({2})";
178
179      string modelString;
180      object[] constants;
181      ISymbolicExpressionTree modelTree;
182
183      constants = new object[] { 1.0, 2.0, 3.0 };
184      modelString = string.Format(modelTemplate, constants);
185      modelTree = new InfixExpressionParser().Parse(modelString);
186      CompareConstantsOptimizationResults(problemData, modelTree);
187
188      constants = new object[] { 5.0, 20.0, -500.362 };
189      modelString = string.Format(modelTemplate, constants);
190      modelTree = new InfixExpressionParser().Parse(modelString);
191      CompareConstantsOptimizationResults(problemData, modelTree);
192
193      constants = new object[] { -6987.25, 1, -888 };
194      modelString = string.Format(modelTemplate, constants);
195      modelTree = new InfixExpressionParser().Parse(modelString);
196      CompareConstantsOptimizationResults(problemData, modelTree);
197    }
198
199    [TestMethod]
200    [TestCategory("Problems.DataAnalysis.Symbolic.Regression")]
201    [TestProperty("Time", "short")]
202    public void ConstantsOptimizationTest_Keijzer05() {
203      var problemData = new KeijzerFunctionFive(seed).GenerateRegressionData();
204      var modelTemplate = "( ({0}) * X * Z ) / ( (({1}) * X + ({2})) * ({3}) * SQR(Y) ) + ({4})";
205
206      string modelString;
207      object[] constants;
208      ISymbolicExpressionTree modelTree;
209
210      constants = new object[] { 1.0, 2.0, 3.0, 4.0, 5.0 };
211      modelString = string.Format(modelTemplate, constants);
212      modelTree = new InfixExpressionParser().Parse(modelString);
213      CompareConstantsOptimizationResults(problemData, modelTree);
214
215      constants = new object[] { 5.0, -2.0, 500.362, -5646, 0.0001 };
216      modelString = string.Format(modelTemplate, constants);
217      modelTree = new InfixExpressionParser().Parse(modelString);
218      CompareConstantsOptimizationResults(problemData, modelTree);
219
220      constants = new object[] { -6987.25, 1, -888, +888, -1, 6987.25, 0 };
221      modelString = string.Format(modelTemplate, constants);
222      modelTree = new InfixExpressionParser().Parse(modelString);
223      CompareConstantsOptimizationResults(problemData, modelTree);
224    }
225  }
226}
Note: See TracBrowser for help on using the repository browser.