Free cookie consent management tool by TermsFeed Policy Generator

source: branches/2974_Constants_Optimization/UnitTests/ConstantsOptimizationTests.cs @ 16475

Last change on this file since 16475 was 16461, checked in by mkommend, 6 years ago

#2974: Added unit tests and refactoring.

File size: 10.2 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using HeuristicLab.Common;
26using HeuristicLab.Core;
27using HeuristicLab.Data;
28using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
29using HeuristicLab.Optimization;
30using HeuristicLab.Parameters;
31using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
32using HeuristicLab.Persistence.Default.Xml;
33using HeuristicLab.Problems.DataAnalysis;
34using HeuristicLab.Problems.DataAnalysis.Symbolic;
35using HeuristicLab.Problems.DataAnalysis.Symbolic.ConstantsOptimization;
36using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression;
37
38
39using HeuristicLab.Problems.Instances.DataAnalysis;
40
41using System;
42using Microsoft.VisualStudio.TestTools.UnitTesting;
43using HeuristicLab.Algorithms.OffspringSelectionGeneticAlgorithm;
44
45namespace UnitTests {
46  [TestClass]
47  public class ConstantsOptimizationTests {
48    private static readonly int seed = 1234;
49
50
51    public static void CompareConstantsOptimizationResults(IRegressionProblemData problemData, ISymbolicExpressionTree tree) {
52      var old_optimizedTree = (ISymbolicExpressionTree)tree.Clone();
53      var old_result = SymbolicRegressionConstantOptimizationEvaluator.OptimizeConstants(
54        new SymbolicDataAnalysisExpressionTreeLinearInterpreter(),
55        old_optimizedTree, problemData, problemData.TrainingIndices, applyLinearScaling: true, maxIterations: 10);
56
57
58      var new_optimizedTree = (ISymbolicExpressionTree)tree.Clone();
59      var new_result = ConstantsOptimizationEvaluator.OptimizeConstants(
60        new SymbolicDataAnalysisExpressionTreeLinearInterpreter(),
61        new_optimizedTree, problemData, problemData.TrainingIndices, applyLinearScaling: true, maxIterations: 10);
62
63      //check R² values
64      Assert.AreEqual(old_result, new_result);
65
66      //check numeric values of constants
67      var old_constants = Util.ExtractConstants(old_optimizedTree);
68      var new_constants = Util.ExtractConstants(new_optimizedTree);
69      Assert.IsTrue(old_constants.SequenceEqual(new_constants));
70    }
71
72   
73
74    [TestMethod]
75    [TestCategory("Problems.DataAnalysis.Symbolic.Regression")]
76    [TestProperty("Time", "short")]
77    public void ConstantsOptimizationTest_Nguyen01() {
78      var problemData = new NguyenFunctionOne(seed).GenerateRegressionData();
79      var modelTemplate = "({0})* CUBE(X) + ({1}) * SQR(X) + ({2}) * X";
80
81      string modelString;
82      object[] constants;
83      ISymbolicExpressionTree modelTree;
84
85      constants = new object[] { 1.0, 2.0, 3.0 };
86      modelString = string.Format(modelTemplate, constants);
87      modelTree = new InfixExpressionParser().Parse(modelString);
88      CompareConstantsOptimizationResults(problemData, modelTree);
89
90      constants = new object[] { 5.0, -2.0, 500.362 };
91      modelString = string.Format(modelTemplate, constants);
92      modelTree = new InfixExpressionParser().Parse(modelString);
93      CompareConstantsOptimizationResults(problemData, modelTree);
94
95      constants = new object[] { -6987.25, 1, -888 };
96      modelString = string.Format(modelTemplate, constants);
97      modelTree = new InfixExpressionParser().Parse(modelString);
98      CompareConstantsOptimizationResults(problemData, modelTree);
99    }
100
101    [TestMethod]
102    [TestCategory("Problems.DataAnalysis.Symbolic.Regression")]
103    [TestProperty("Time", "short")]
104    public void ConstantsOptimizationTest_Nguyen03() {
105      var problemData = new NguyenFunctionThree(seed).GenerateRegressionData();
106      var modelTemplate = "({0})* X*X*X*X*X + ({1}) * X*X*X*X + ({2}) * X*X*X + ({3}) * X*X + ({4}) * X + {5}";
107
108      string modelString;
109      object[] constants;
110      ISymbolicExpressionTree modelTree;
111
112      constants = new object[] { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 };
113      modelString = string.Format(modelTemplate, constants);
114      modelTree = new InfixExpressionParser().Parse(modelString);
115      CompareConstantsOptimizationResults(problemData, modelTree);
116
117      constants = new object[] { 5.0, -2.0, 500.362, -5646, 0.0001, 1234 };
118      modelString = string.Format(modelTemplate, constants);
119      modelTree = new InfixExpressionParser().Parse(modelString);
120      CompareConstantsOptimizationResults(problemData, modelTree);
121
122      constants = new object[] { -6987.25, 1, -888, +888, -1, 6987.25, 0, 25 };
123      modelString = string.Format(modelTemplate, constants);
124      modelTree = new InfixExpressionParser().Parse(modelString);
125      CompareConstantsOptimizationResults(problemData, modelTree);
126    }
127
128    [TestMethod]
129    [TestCategory("Problems.DataAnalysis.Symbolic.Regression")]
130    [TestProperty("Time", "short")]
131    public void ConstantsOptimizationTest_Nguyen05() {
132      var problemData = new NguyenFunctionFive(seed).GenerateRegressionData();
133      var modelTemplate = "({0}) * SIN(({1})*X*X) * COS(({2})*X) + ({3})";
134
135      string modelString;
136      object[] constants;
137      ISymbolicExpressionTree modelTree;
138
139      constants = new object[] { 1.0, 2.0, 3.0, 4.0 };
140      modelString = string.Format(modelTemplate, constants);
141      modelTree = new InfixExpressionParser().Parse(modelString);
142      CompareConstantsOptimizationResults(problemData, modelTree);
143
144      constants = new object[] { 5.0, -2.0, -3.0, 5.0 };
145      modelString = string.Format(modelTemplate, constants);
146      modelTree = new InfixExpressionParser().Parse(modelString);
147      CompareConstantsOptimizationResults(problemData, modelTree);
148
149      constants = new object[] { 0.5, 1, 1, 3 };
150      modelString = string.Format(modelTemplate, constants);
151      modelTree = new InfixExpressionParser().Parse(modelString);
152      CompareConstantsOptimizationResults(problemData, modelTree);
153    }
154
155    [TestMethod]
156    [TestCategory("Problems.DataAnalysis.Symbolic.Regression")]
157    [TestProperty("Time", "short")]
158    public void ConstantsOptimizationTest_Nguyen07() {
159      var problemData = new NguyenFunctionFive(seed).GenerateRegressionData();
160      var modelTemplate = "({0}) * LOG(({1})*X + ({2})) + ({3}) * LOG(({4})*X*X + ({5})) + ({6})";
161
162      string modelString;
163      object[] constants;
164      ISymbolicExpressionTree modelTree;
165
166      constants = new object[] { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0 };
167      modelString = string.Format(modelTemplate, constants);
168      modelTree = new InfixExpressionParser().Parse(modelString);
169      CompareConstantsOptimizationResults(problemData, modelTree);
170
171      constants = new object[] { 5.0, 2.0, 500.362, -5646, 0.0001, 1234, 421 };
172      modelString = string.Format(modelTemplate, constants);
173      modelTree = new InfixExpressionParser().Parse(modelString);
174      CompareConstantsOptimizationResults(problemData, modelTree);
175
176      constants = new object[] { -6987.25, 1, 888, +888, -1, 6987.25, 0, 25 };
177      modelString = string.Format(modelTemplate, constants);
178      modelTree = new InfixExpressionParser().Parse(modelString);
179      CompareConstantsOptimizationResults(problemData, modelTree);
180    }
181
182    [TestMethod]
183    [TestCategory("Problems.DataAnalysis.Symbolic.Regression")]
184    [TestProperty("Time", "short")]
185    public void ConstantsOptimizationTest_Nguyen08() {
186      var problemData = new NguyenFunctionEight(seed).GenerateRegressionData();
187      var modelTemplate = "({0})* SQRT(({1}) * X) + ({2})";
188
189      string modelString;
190      object[] constants;
191      ISymbolicExpressionTree modelTree;
192
193      constants = new object[] { 1.0, 2.0, 3.0 };
194      modelString = string.Format(modelTemplate, constants);
195      modelTree = new InfixExpressionParser().Parse(modelString);
196      CompareConstantsOptimizationResults(problemData, modelTree);
197
198      constants = new object[] { 5.0, 20.0, -500.362 };
199      modelString = string.Format(modelTemplate, constants);
200      modelTree = new InfixExpressionParser().Parse(modelString);
201      CompareConstantsOptimizationResults(problemData, modelTree);
202
203      constants = new object[] { -6987.25, 1, -888 };
204      modelString = string.Format(modelTemplate, constants);
205      modelTree = new InfixExpressionParser().Parse(modelString);
206      CompareConstantsOptimizationResults(problemData, modelTree);
207    }
208
209    [TestMethod]
210    [TestCategory("Problems.DataAnalysis.Symbolic.Regression")]
211    [TestProperty("Time", "short")]
212    public void ConstantsOptimizationTest_Keijzer05() {
213      var problemData = new KeijzerFunctionFive(seed).GenerateRegressionData();
214      var modelTemplate = "( ({0}) * X * Z ) / ( (({1}) * X + ({2})) * ({3}) * SQR(Y) ) + ({4})";
215
216      string modelString;
217      object[] constants;
218      ISymbolicExpressionTree modelTree;
219
220      constants = new object[] { 1.0, 2.0, 3.0, 4.0, 5.0 };
221      modelString = string.Format(modelTemplate, constants);
222      modelTree = new InfixExpressionParser().Parse(modelString);
223      CompareConstantsOptimizationResults(problemData, modelTree);
224
225      constants = new object[] { 5.0, -2.0, 500.362, -5646, 0.0001 };
226      modelString = string.Format(modelTemplate, constants);
227      modelTree = new InfixExpressionParser().Parse(modelString);
228      CompareConstantsOptimizationResults(problemData, modelTree);
229
230      constants = new object[] { -6987.25, 1, -888, +888, -1, 6987.25, 0 };
231      modelString = string.Format(modelTemplate, constants);
232      modelTree = new InfixExpressionParser().Parse(modelString);
233      CompareConstantsOptimizationResults(problemData, modelTree);
234    }
235  }
236}
Note: See TracBrowser for help on using the repository browser.