[16461] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 23 | using HeuristicLab.Problems.DataAnalysis;
|
---|
| 24 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
| 25 | using HeuristicLab.Problems.DataAnalysis.Symbolic.ConstantsOptimization;
|
---|
| 26 | using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression;
|
---|
| 27 |
|
---|
| 28 |
|
---|
| 29 | using HeuristicLab.Problems.Instances.DataAnalysis;
|
---|
| 30 | using Microsoft.VisualStudio.TestTools.UnitTesting;
|
---|
| 31 |
|
---|
| 32 | namespace UnitTests {
|
---|
| 33 | [TestClass]
|
---|
| 34 | public class ConstantsOptimizationTests {
|
---|
| 35 | private static readonly int seed = 1234;
|
---|
| 36 |
|
---|
| 37 |
|
---|
| 38 | public static void CompareConstantsOptimizationResults(IRegressionProblemData problemData, ISymbolicExpressionTree tree) {
|
---|
[16507] | 39 | var applyLinearScaling = true;
|
---|
[16461] | 40 | var old_optimizedTree = (ISymbolicExpressionTree)tree.Clone();
|
---|
| 41 | var old_result = SymbolicRegressionConstantOptimizationEvaluator.OptimizeConstants(
|
---|
| 42 | new SymbolicDataAnalysisExpressionTreeLinearInterpreter(),
|
---|
[16507] | 43 | old_optimizedTree, problemData, problemData.TrainingIndices, applyLinearScaling, maxIterations: 10);
|
---|
[16461] | 44 |
|
---|
| 45 |
|
---|
| 46 | var new_optimizedTree = (ISymbolicExpressionTree)tree.Clone();
|
---|
[16507] | 47 | var new_result = LMConstantsOptimizer.OptimizeConstants(new_optimizedTree, problemData.Dataset, problemData.TargetVariable, problemData.TrainingIndices, applyLinearScaling, maxIterations: 10);
|
---|
[16461] | 48 |
|
---|
[16690] | 49 | // extract constants
|
---|
| 50 | var old_constants = Util.ExtractConstants(old_optimizedTree, applyLinearScaling);
|
---|
| 51 | var new_constants = Util.ExtractConstants(new_optimizedTree, applyLinearScaling);
|
---|
| 52 |
|
---|
| 53 | {
|
---|
| 54 | // consistency with old ConstOpt style
|
---|
| 55 | var initalR2 = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(
|
---|
| 56 | new SymbolicDataAnalysisExpressionTreeLinearInterpreter(),
|
---|
| 57 | tree, double.MinValue, double.MaxValue, problemData, problemData.TrainingIndices, applyLinearScaling);
|
---|
| 58 |
|
---|
| 59 | // LMConstantsOptimizer returns 0 if optimization was not successful
|
---|
| 60 | if (initalR2 - new_result > 0.001) {
|
---|
| 61 | new_result = initalR2;
|
---|
| 62 | new_constants = old_constants;
|
---|
| 63 | }
|
---|
| 64 | }
|
---|
| 65 |
|
---|
[16461] | 66 | //check R² values
|
---|
[16690] | 67 | Assert.AreEqual(old_result, new_result, 1E-6);
|
---|
[16461] | 68 |
|
---|
| 69 | //check numeric values of constants
|
---|
[16500] | 70 | for (int i = 0; i < old_constants.Length; i++) {
|
---|
[16690] | 71 | if (old_constants[i] == 0) {
|
---|
| 72 | Assert.AreEqual(old_constants[i], new_constants[i], 1E-8); // check absolute error
|
---|
| 73 | } else {
|
---|
| 74 | Assert.AreEqual(0.0, 1.0 - new_constants[i] / old_constants[i], 1E-6); // check percentual error
|
---|
| 75 | }
|
---|
[16500] | 76 | }
|
---|
[16461] | 77 | }
|
---|
| 78 |
|
---|
| 79 |
|
---|
[16500] | 80 |
|
---|
[16461] | 81 | [TestMethod]
|
---|
| 82 | [TestCategory("Problems.DataAnalysis.Symbolic.Regression")]
|
---|
| 83 | [TestProperty("Time", "short")]
|
---|
| 84 | public void ConstantsOptimizationTest_Nguyen01() {
|
---|
| 85 | var problemData = new NguyenFunctionOne(seed).GenerateRegressionData();
|
---|
| 86 | var modelTemplate = "({0})* CUBE(X) + ({1}) * SQR(X) + ({2}) * X";
|
---|
| 87 |
|
---|
| 88 | string modelString;
|
---|
| 89 | object[] constants;
|
---|
| 90 | ISymbolicExpressionTree modelTree;
|
---|
| 91 |
|
---|
| 92 | constants = new object[] { 1.0, 2.0, 3.0 };
|
---|
| 93 | modelString = string.Format(modelTemplate, constants);
|
---|
| 94 | modelTree = new InfixExpressionParser().Parse(modelString);
|
---|
| 95 | CompareConstantsOptimizationResults(problemData, modelTree);
|
---|
| 96 |
|
---|
| 97 | constants = new object[] { 5.0, -2.0, 500.362 };
|
---|
| 98 | modelString = string.Format(modelTemplate, constants);
|
---|
| 99 | modelTree = new InfixExpressionParser().Parse(modelString);
|
---|
| 100 | CompareConstantsOptimizationResults(problemData, modelTree);
|
---|
| 101 |
|
---|
| 102 | constants = new object[] { -6987.25, 1, -888 };
|
---|
| 103 | modelString = string.Format(modelTemplate, constants);
|
---|
| 104 | modelTree = new InfixExpressionParser().Parse(modelString);
|
---|
| 105 | CompareConstantsOptimizationResults(problemData, modelTree);
|
---|
| 106 | }
|
---|
| 107 |
|
---|
| 108 | [TestMethod]
|
---|
| 109 | [TestCategory("Problems.DataAnalysis.Symbolic.Regression")]
|
---|
| 110 | [TestProperty("Time", "short")]
|
---|
| 111 | public void ConstantsOptimizationTest_Nguyen03() {
|
---|
| 112 | var problemData = new NguyenFunctionThree(seed).GenerateRegressionData();
|
---|
| 113 | var modelTemplate = "({0})* X*X*X*X*X + ({1}) * X*X*X*X + ({2}) * X*X*X + ({3}) * X*X + ({4}) * X + {5}";
|
---|
| 114 |
|
---|
| 115 | string modelString;
|
---|
| 116 | object[] constants;
|
---|
| 117 | ISymbolicExpressionTree modelTree;
|
---|
| 118 |
|
---|
| 119 | constants = new object[] { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 };
|
---|
| 120 | modelString = string.Format(modelTemplate, constants);
|
---|
| 121 | modelTree = new InfixExpressionParser().Parse(modelString);
|
---|
| 122 | CompareConstantsOptimizationResults(problemData, modelTree);
|
---|
| 123 |
|
---|
| 124 | constants = new object[] { 5.0, -2.0, 500.362, -5646, 0.0001, 1234 };
|
---|
| 125 | modelString = string.Format(modelTemplate, constants);
|
---|
| 126 | modelTree = new InfixExpressionParser().Parse(modelString);
|
---|
| 127 | CompareConstantsOptimizationResults(problemData, modelTree);
|
---|
| 128 |
|
---|
| 129 | constants = new object[] { -6987.25, 1, -888, +888, -1, 6987.25, 0, 25 };
|
---|
| 130 | modelString = string.Format(modelTemplate, constants);
|
---|
| 131 | modelTree = new InfixExpressionParser().Parse(modelString);
|
---|
| 132 | CompareConstantsOptimizationResults(problemData, modelTree);
|
---|
| 133 | }
|
---|
| 134 |
|
---|
| 135 | [TestMethod]
|
---|
| 136 | [TestCategory("Problems.DataAnalysis.Symbolic.Regression")]
|
---|
| 137 | [TestProperty("Time", "short")]
|
---|
| 138 | public void ConstantsOptimizationTest_Nguyen05() {
|
---|
| 139 | var problemData = new NguyenFunctionFive(seed).GenerateRegressionData();
|
---|
| 140 | var modelTemplate = "({0}) * SIN(({1})*X*X) * COS(({2})*X) + ({3})";
|
---|
| 141 |
|
---|
| 142 | string modelString;
|
---|
| 143 | object[] constants;
|
---|
| 144 | ISymbolicExpressionTree modelTree;
|
---|
| 145 |
|
---|
| 146 | constants = new object[] { 1.0, 2.0, 3.0, 4.0 };
|
---|
| 147 | modelString = string.Format(modelTemplate, constants);
|
---|
| 148 | modelTree = new InfixExpressionParser().Parse(modelString);
|
---|
| 149 | CompareConstantsOptimizationResults(problemData, modelTree);
|
---|
| 150 |
|
---|
| 151 | constants = new object[] { 5.0, -2.0, -3.0, 5.0 };
|
---|
| 152 | modelString = string.Format(modelTemplate, constants);
|
---|
| 153 | modelTree = new InfixExpressionParser().Parse(modelString);
|
---|
| 154 | CompareConstantsOptimizationResults(problemData, modelTree);
|
---|
| 155 |
|
---|
| 156 | constants = new object[] { 0.5, 1, 1, 3 };
|
---|
| 157 | modelString = string.Format(modelTemplate, constants);
|
---|
| 158 | modelTree = new InfixExpressionParser().Parse(modelString);
|
---|
| 159 | CompareConstantsOptimizationResults(problemData, modelTree);
|
---|
| 160 | }
|
---|
| 161 |
|
---|
| 162 | [TestMethod]
|
---|
| 163 | [TestCategory("Problems.DataAnalysis.Symbolic.Regression")]
|
---|
| 164 | [TestProperty("Time", "short")]
|
---|
| 165 | public void ConstantsOptimizationTest_Nguyen07() {
|
---|
[16690] | 166 | var problemData = new NguyenFunctionSeven(seed).GenerateRegressionData();
|
---|
[16461] | 167 | var modelTemplate = "({0}) * LOG(({1})*X + ({2})) + ({3}) * LOG(({4})*X*X + ({5})) + ({6})";
|
---|
| 168 |
|
---|
| 169 | string modelString;
|
---|
| 170 | object[] constants;
|
---|
| 171 | ISymbolicExpressionTree modelTree;
|
---|
| 172 |
|
---|
| 173 | constants = new object[] { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0 };
|
---|
| 174 | modelString = string.Format(modelTemplate, constants);
|
---|
| 175 | modelTree = new InfixExpressionParser().Parse(modelString);
|
---|
| 176 | CompareConstantsOptimizationResults(problemData, modelTree);
|
---|
| 177 |
|
---|
| 178 | constants = new object[] { 5.0, 2.0, 500.362, -5646, 0.0001, 1234, 421 };
|
---|
| 179 | modelString = string.Format(modelTemplate, constants);
|
---|
| 180 | modelTree = new InfixExpressionParser().Parse(modelString);
|
---|
[16690] | 181 | // This test fails not because of a problem in ConstOpt but because of the code in
|
---|
| 182 | // OnlinePearsonsRCalculator
|
---|
| 183 | // double xVar = sxCalculator.PopulationVariance;
|
---|
| 184 | // double yVar = syCalculator.PopulationVariance;
|
---|
| 185 | // if (xVar.IsAlmost(0.0) || yVar.IsAlmost(0.0)) {
|
---|
| 186 | // return 0.0;
|
---|
| 187 | // } else { ...
|
---|
| 188 | // PopulationVariance might become close to zero, but the result of cov / (sqrt(xvar) * sqrt(yvar) might still be correct.
|
---|
| 189 | // Currently, we just return 0. Which means that we reset optimized constants to initial values
|
---|
[16461] | 190 | CompareConstantsOptimizationResults(problemData, modelTree);
|
---|
| 191 |
|
---|
| 192 | constants = new object[] { -6987.25, 1, 888, +888, -1, 6987.25, 0, 25 };
|
---|
| 193 | modelString = string.Format(modelTemplate, constants);
|
---|
| 194 | modelTree = new InfixExpressionParser().Parse(modelString);
|
---|
| 195 | CompareConstantsOptimizationResults(problemData, modelTree);
|
---|
| 196 | }
|
---|
| 197 |
|
---|
| 198 | [TestMethod]
|
---|
| 199 | [TestCategory("Problems.DataAnalysis.Symbolic.Regression")]
|
---|
| 200 | [TestProperty("Time", "short")]
|
---|
| 201 | public void ConstantsOptimizationTest_Nguyen08() {
|
---|
| 202 | var problemData = new NguyenFunctionEight(seed).GenerateRegressionData();
|
---|
| 203 | var modelTemplate = "({0})* SQRT(({1}) * X) + ({2})";
|
---|
| 204 |
|
---|
| 205 | string modelString;
|
---|
| 206 | object[] constants;
|
---|
| 207 | ISymbolicExpressionTree modelTree;
|
---|
| 208 |
|
---|
| 209 | constants = new object[] { 1.0, 2.0, 3.0 };
|
---|
| 210 | modelString = string.Format(modelTemplate, constants);
|
---|
| 211 | modelTree = new InfixExpressionParser().Parse(modelString);
|
---|
| 212 | CompareConstantsOptimizationResults(problemData, modelTree);
|
---|
| 213 |
|
---|
| 214 | constants = new object[] { 5.0, 20.0, -500.362 };
|
---|
| 215 | modelString = string.Format(modelTemplate, constants);
|
---|
| 216 | modelTree = new InfixExpressionParser().Parse(modelString);
|
---|
| 217 | CompareConstantsOptimizationResults(problemData, modelTree);
|
---|
| 218 |
|
---|
| 219 | constants = new object[] { -6987.25, 1, -888 };
|
---|
| 220 | modelString = string.Format(modelTemplate, constants);
|
---|
| 221 | modelTree = new InfixExpressionParser().Parse(modelString);
|
---|
| 222 | CompareConstantsOptimizationResults(problemData, modelTree);
|
---|
| 223 | }
|
---|
| 224 |
|
---|
| 225 | [TestMethod]
|
---|
| 226 | [TestCategory("Problems.DataAnalysis.Symbolic.Regression")]
|
---|
| 227 | [TestProperty("Time", "short")]
|
---|
| 228 | public void ConstantsOptimizationTest_Keijzer05() {
|
---|
| 229 | var problemData = new KeijzerFunctionFive(seed).GenerateRegressionData();
|
---|
| 230 | var modelTemplate = "( ({0}) * X * Z ) / ( (({1}) * X + ({2})) * ({3}) * SQR(Y) ) + ({4})";
|
---|
| 231 |
|
---|
| 232 | string modelString;
|
---|
| 233 | object[] constants;
|
---|
| 234 | ISymbolicExpressionTree modelTree;
|
---|
| 235 |
|
---|
| 236 | constants = new object[] { 1.0, 2.0, 3.0, 4.0, 5.0 };
|
---|
| 237 | modelString = string.Format(modelTemplate, constants);
|
---|
| 238 | modelTree = new InfixExpressionParser().Parse(modelString);
|
---|
| 239 | CompareConstantsOptimizationResults(problemData, modelTree);
|
---|
| 240 |
|
---|
| 241 | constants = new object[] { 5.0, -2.0, 500.362, -5646, 0.0001 };
|
---|
| 242 | modelString = string.Format(modelTemplate, constants);
|
---|
| 243 | modelTree = new InfixExpressionParser().Parse(modelString);
|
---|
| 244 | CompareConstantsOptimizationResults(problemData, modelTree);
|
---|
| 245 |
|
---|
| 246 | constants = new object[] { -6987.25, 1, -888, +888, -1, 6987.25, 0 };
|
---|
| 247 | modelString = string.Format(modelTemplate, constants);
|
---|
| 248 | modelTree = new InfixExpressionParser().Parse(modelString);
|
---|
| 249 | CompareConstantsOptimizationResults(problemData, modelTree);
|
---|
| 250 | }
|
---|
[16690] | 251 |
|
---|
| 252 | [TestInitialize]
|
---|
| 253 | public void InitEnvironment() {
|
---|
| 254 | System.Threading.Thread.CurrentThread.CurrentCulture = System.Globalization.CultureInfo.InvariantCulture;
|
---|
| 255 | }
|
---|
[16461] | 256 | }
|
---|
| 257 | }
|
---|