[14843] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[17193] | 3 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[14843] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
[14950] | 25 | using System.Runtime.Serialization;
|
---|
[14843] | 26 | using AutoDiff;
|
---|
| 27 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 28 |
|
---|
| 29 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
|
---|
| 30 | public class TreeToAutoDiffTermConverter {
|
---|
| 31 | public delegate double ParametricFunction(double[] vars, double[] @params);
|
---|
[14950] | 32 |
|
---|
[14843] | 33 | public delegate Tuple<double[], double> ParametricFunctionGradient(double[] vars, double[] @params);
|
---|
| 34 |
|
---|
| 35 | #region helper class
|
---|
| 36 | public class DataForVariable {
|
---|
| 37 | public readonly string variableName;
|
---|
| 38 | public readonly string variableValue; // for factor vars
|
---|
| 39 | public readonly int lag;
|
---|
| 40 |
|
---|
| 41 | public DataForVariable(string varName, string varValue, int lag) {
|
---|
| 42 | this.variableName = varName;
|
---|
| 43 | this.variableValue = varValue;
|
---|
| 44 | this.lag = lag;
|
---|
| 45 | }
|
---|
| 46 |
|
---|
| 47 | public override bool Equals(object obj) {
|
---|
| 48 | var other = obj as DataForVariable;
|
---|
| 49 | if (other == null) return false;
|
---|
| 50 | return other.variableName.Equals(this.variableName) &&
|
---|
| 51 | other.variableValue.Equals(this.variableValue) &&
|
---|
| 52 | other.lag == this.lag;
|
---|
| 53 | }
|
---|
| 54 |
|
---|
| 55 | public override int GetHashCode() {
|
---|
| 56 | return variableName.GetHashCode() ^ variableValue.GetHashCode() ^ lag;
|
---|
| 57 | }
|
---|
| 58 | }
|
---|
| 59 | #endregion
|
---|
| 60 |
|
---|
| 61 | #region derivations of functions
|
---|
| 62 | // create function factory for arctangent
|
---|
| 63 | private static readonly Func<Term, UnaryFunc> arctan = UnaryFunc.Factory(
|
---|
| 64 | eval: Math.Atan,
|
---|
| 65 | diff: x => 1 / (1 + x * x));
|
---|
[14950] | 66 |
|
---|
[14843] | 67 | private static readonly Func<Term, UnaryFunc> sin = UnaryFunc.Factory(
|
---|
| 68 | eval: Math.Sin,
|
---|
| 69 | diff: Math.Cos);
|
---|
[14950] | 70 |
|
---|
[14843] | 71 | private static readonly Func<Term, UnaryFunc> cos = UnaryFunc.Factory(
|
---|
[14950] | 72 | eval: Math.Cos,
|
---|
| 73 | diff: x => -Math.Sin(x));
|
---|
| 74 |
|
---|
[14843] | 75 | private static readonly Func<Term, UnaryFunc> tan = UnaryFunc.Factory(
|
---|
| 76 | eval: Math.Tan,
|
---|
| 77 | diff: x => 1 + Math.Tan(x) * Math.Tan(x));
|
---|
[16676] | 78 | private static readonly Func<Term, UnaryFunc> tanh = UnaryFunc.Factory(
|
---|
| 79 | eval: Math.Tanh,
|
---|
| 80 | diff: x => 1 - Math.Tanh(x) * Math.Tanh(x));
|
---|
[14843] | 81 | private static readonly Func<Term, UnaryFunc> erf = UnaryFunc.Factory(
|
---|
| 82 | eval: alglib.errorfunction,
|
---|
| 83 | diff: x => 2.0 * Math.Exp(-(x * x)) / Math.Sqrt(Math.PI));
|
---|
[14950] | 84 |
|
---|
[14843] | 85 | private static readonly Func<Term, UnaryFunc> norm = UnaryFunc.Factory(
|
---|
| 86 | eval: alglib.normaldistribution,
|
---|
| 87 | diff: x => -(Math.Exp(-(x * x)) * Math.Sqrt(Math.Exp(x * x)) * x) / Math.Sqrt(2 * Math.PI));
|
---|
| 88 |
|
---|
[16356] | 89 | private static readonly Func<Term, UnaryFunc> abs = UnaryFunc.Factory(
|
---|
| 90 | eval: Math.Abs,
|
---|
| 91 | diff: x => Math.Sign(x)
|
---|
| 92 | );
|
---|
| 93 |
|
---|
[17193] | 94 | private static readonly Func<Term, UnaryFunc> cbrt = UnaryFunc.Factory(
|
---|
| 95 | eval: x => x < 0 ? -Math.Pow(-x, 1.0 / 3) : Math.Pow(x, 1.0 / 3),
|
---|
| 96 | diff: x => { var cbrt_x = x < 0 ? -Math.Pow(-x, 1.0 / 3) : Math.Pow(x, 1.0 / 3); return 1.0 / (3 * cbrt_x * cbrt_x); }
|
---|
| 97 | );
|
---|
| 98 |
|
---|
| 99 |
|
---|
| 100 |
|
---|
[14843] | 101 | #endregion
|
---|
| 102 |
|
---|
[15447] | 103 | public static bool TryConvertToAutoDiff(ISymbolicExpressionTree tree, bool makeVariableWeightsVariable, bool addLinearScalingTerms,
|
---|
[14843] | 104 | out List<DataForVariable> parameters, out double[] initialConstants,
|
---|
| 105 | out ParametricFunction func,
|
---|
| 106 | out ParametricFunctionGradient func_grad) {
|
---|
| 107 |
|
---|
| 108 | // use a transformator object which holds the state (variable list, parameter list, ...) for recursive transformation of the tree
|
---|
[16508] | 109 | var transformator = new TreeToAutoDiffTermConverter(makeVariableWeightsVariable, addLinearScalingTerms);
|
---|
[14843] | 110 | AutoDiff.Term term;
|
---|
[14950] | 111 | try {
|
---|
| 112 | term = transformator.ConvertToAutoDiff(tree.Root.GetSubtree(0));
|
---|
[14843] | 113 | var parameterEntries = transformator.parameters.ToArray(); // guarantee same order for keys and values
|
---|
[14950] | 114 | var compiledTerm = term.Compile(transformator.variables.ToArray(),
|
---|
| 115 | parameterEntries.Select(kvp => kvp.Value).ToArray());
|
---|
[14843] | 116 | parameters = new List<DataForVariable>(parameterEntries.Select(kvp => kvp.Key));
|
---|
| 117 | initialConstants = transformator.initialConstants.ToArray();
|
---|
| 118 | func = (vars, @params) => compiledTerm.Evaluate(vars, @params);
|
---|
| 119 | func_grad = (vars, @params) => compiledTerm.Differentiate(vars, @params);
|
---|
[14950] | 120 | return true;
|
---|
| 121 | } catch (ConversionException) {
|
---|
[14843] | 122 | func = null;
|
---|
| 123 | func_grad = null;
|
---|
[16508] | 124 | parameters = null;
|
---|
[16463] | 125 | initialConstants = null;
|
---|
[16461] | 126 | }
|
---|
| 127 | return false;
|
---|
| 128 | }
|
---|
| 129 |
|
---|
[14843] | 130 | // state for recursive transformation of trees
|
---|
[16458] | 131 | private readonly List<double> initialConstants;
|
---|
| 132 | private readonly Dictionary<DataForVariable, AutoDiff.Variable> parameters;
|
---|
[14843] | 133 | private readonly List<AutoDiff.Variable> variables;
|
---|
| 134 | private readonly bool makeVariableWeightsVariable;
|
---|
[16508] | 135 | private readonly bool addLinearScalingTerms;
|
---|
[14843] | 136 |
|
---|
[16508] | 137 | private TreeToAutoDiffTermConverter(bool makeVariableWeightsVariable, bool addLinearScalingTerms) {
|
---|
[14843] | 138 | this.makeVariableWeightsVariable = makeVariableWeightsVariable;
|
---|
[16508] | 139 | this.addLinearScalingTerms = addLinearScalingTerms;
|
---|
[14843] | 140 | this.initialConstants = new List<double>();
|
---|
[16500] | 141 | this.parameters = new Dictionary<DataForVariable, AutoDiff.Variable>();
|
---|
[14843] | 142 | this.variables = new List<AutoDiff.Variable>();
|
---|
| 143 | }
|
---|
| 144 |
|
---|
[14950] | 145 | private AutoDiff.Term ConvertToAutoDiff(ISymbolicExpressionTreeNode node) {
|
---|
[14843] | 146 | if (node.Symbol is Constant) {
|
---|
| 147 | initialConstants.Add(((ConstantTreeNode)node).Value);
|
---|
| 148 | var var = new AutoDiff.Variable();
|
---|
| 149 | variables.Add(var);
|
---|
[14950] | 150 | return var;
|
---|
[14843] | 151 | }
|
---|
| 152 | if (node.Symbol is Variable || node.Symbol is BinaryFactorVariable) {
|
---|
| 153 | var varNode = node as VariableTreeNodeBase;
|
---|
| 154 | var factorVarNode = node as BinaryFactorVariableTreeNode;
|
---|
| 155 | // factor variable values are only 0 or 1 and set in x accordingly
|
---|
| 156 | var varValue = factorVarNode != null ? factorVarNode.VariableValue : string.Empty;
|
---|
| 157 | var par = FindOrCreateParameter(parameters, varNode.VariableName, varValue);
|
---|
| 158 |
|
---|
| 159 | if (makeVariableWeightsVariable) {
|
---|
| 160 | initialConstants.Add(varNode.Weight);
|
---|
| 161 | var w = new AutoDiff.Variable();
|
---|
| 162 | variables.Add(w);
|
---|
[14950] | 163 | return AutoDiff.TermBuilder.Product(w, par);
|
---|
[14843] | 164 | } else {
|
---|
[14950] | 165 | return varNode.Weight * par;
|
---|
[14843] | 166 | }
|
---|
| 167 | }
|
---|
| 168 | if (node.Symbol is FactorVariable) {
|
---|
| 169 | var factorVarNode = node as FactorVariableTreeNode;
|
---|
| 170 | var products = new List<Term>();
|
---|
| 171 | foreach (var variableValue in factorVarNode.Symbol.GetVariableValues(factorVarNode.VariableName)) {
|
---|
| 172 | var par = FindOrCreateParameter(parameters, factorVarNode.VariableName, variableValue);
|
---|
| 173 |
|
---|
| 174 | initialConstants.Add(factorVarNode.GetValue(variableValue));
|
---|
| 175 | var wVar = new AutoDiff.Variable();
|
---|
| 176 | variables.Add(wVar);
|
---|
| 177 |
|
---|
| 178 | products.Add(AutoDiff.TermBuilder.Product(wVar, par));
|
---|
| 179 | }
|
---|
[14950] | 180 | return AutoDiff.TermBuilder.Sum(products);
|
---|
[14843] | 181 | }
|
---|
| 182 | if (node.Symbol is LaggedVariable) {
|
---|
| 183 | var varNode = node as LaggedVariableTreeNode;
|
---|
| 184 | var par = FindOrCreateParameter(parameters, varNode.VariableName, string.Empty, varNode.Lag);
|
---|
| 185 |
|
---|
| 186 | if (makeVariableWeightsVariable) {
|
---|
| 187 | initialConstants.Add(varNode.Weight);
|
---|
| 188 | var w = new AutoDiff.Variable();
|
---|
| 189 | variables.Add(w);
|
---|
[14950] | 190 | return AutoDiff.TermBuilder.Product(w, par);
|
---|
[14843] | 191 | } else {
|
---|
[14950] | 192 | return varNode.Weight * par;
|
---|
[14843] | 193 | }
|
---|
| 194 | }
|
---|
| 195 | if (node.Symbol is Addition) {
|
---|
| 196 | List<AutoDiff.Term> terms = new List<Term>();
|
---|
| 197 | foreach (var subTree in node.Subtrees) {
|
---|
[14950] | 198 | terms.Add(ConvertToAutoDiff(subTree));
|
---|
[14843] | 199 | }
|
---|
[14950] | 200 | return AutoDiff.TermBuilder.Sum(terms);
|
---|
[14843] | 201 | }
|
---|
| 202 | if (node.Symbol is Subtraction) {
|
---|
| 203 | List<AutoDiff.Term> terms = new List<Term>();
|
---|
| 204 | for (int i = 0; i < node.SubtreeCount; i++) {
|
---|
[14950] | 205 | AutoDiff.Term t = ConvertToAutoDiff(node.GetSubtree(i));
|
---|
[14843] | 206 | if (i > 0) t = -t;
|
---|
| 207 | terms.Add(t);
|
---|
| 208 | }
|
---|
[14950] | 209 | if (terms.Count == 1) return -terms[0];
|
---|
| 210 | else return AutoDiff.TermBuilder.Sum(terms);
|
---|
[14843] | 211 | }
|
---|
| 212 | if (node.Symbol is Multiplication) {
|
---|
| 213 | List<AutoDiff.Term> terms = new List<Term>();
|
---|
| 214 | foreach (var subTree in node.Subtrees) {
|
---|
[14950] | 215 | terms.Add(ConvertToAutoDiff(subTree));
|
---|
[14843] | 216 | }
|
---|
[14950] | 217 | if (terms.Count == 1) return terms[0];
|
---|
| 218 | else return terms.Aggregate((a, b) => new AutoDiff.Product(a, b));
|
---|
[14843] | 219 | }
|
---|
| 220 | if (node.Symbol is Division) {
|
---|
| 221 | List<AutoDiff.Term> terms = new List<Term>();
|
---|
| 222 | foreach (var subTree in node.Subtrees) {
|
---|
[14950] | 223 | terms.Add(ConvertToAutoDiff(subTree));
|
---|
[14843] | 224 | }
|
---|
[14950] | 225 | if (terms.Count == 1) return 1.0 / terms[0];
|
---|
| 226 | else return terms.Aggregate((a, b) => new AutoDiff.Product(a, 1.0 / b));
|
---|
[14843] | 227 | }
|
---|
[16356] | 228 | if (node.Symbol is Absolute) {
|
---|
| 229 | var x1 = ConvertToAutoDiff(node.GetSubtree(0));
|
---|
| 230 | return abs(x1);
|
---|
| 231 | }
|
---|
[16360] | 232 | if (node.Symbol is AnalyticQuotient) {
|
---|
[16356] | 233 | var x1 = ConvertToAutoDiff(node.GetSubtree(0));
|
---|
| 234 | var x2 = ConvertToAutoDiff(node.GetSubtree(1));
|
---|
| 235 | return x1 / (TermBuilder.Power(1 + x2 * x2, 0.5));
|
---|
| 236 | }
|
---|
[14843] | 237 | if (node.Symbol is Logarithm) {
|
---|
[14950] | 238 | return AutoDiff.TermBuilder.Log(
|
---|
| 239 | ConvertToAutoDiff(node.GetSubtree(0)));
|
---|
[14843] | 240 | }
|
---|
| 241 | if (node.Symbol is Exponential) {
|
---|
[14950] | 242 | return AutoDiff.TermBuilder.Exp(
|
---|
| 243 | ConvertToAutoDiff(node.GetSubtree(0)));
|
---|
[14843] | 244 | }
|
---|
| 245 | if (node.Symbol is Square) {
|
---|
[14950] | 246 | return AutoDiff.TermBuilder.Power(
|
---|
| 247 | ConvertToAutoDiff(node.GetSubtree(0)), 2.0);
|
---|
[14843] | 248 | }
|
---|
| 249 | if (node.Symbol is SquareRoot) {
|
---|
[14950] | 250 | return AutoDiff.TermBuilder.Power(
|
---|
| 251 | ConvertToAutoDiff(node.GetSubtree(0)), 0.5);
|
---|
[14843] | 252 | }
|
---|
[16356] | 253 | if (node.Symbol is Cube) {
|
---|
| 254 | return AutoDiff.TermBuilder.Power(
|
---|
| 255 | ConvertToAutoDiff(node.GetSubtree(0)), 3.0);
|
---|
| 256 | }
|
---|
| 257 | if (node.Symbol is CubeRoot) {
|
---|
[17193] | 258 | return cbrt(ConvertToAutoDiff(node.GetSubtree(0)));
|
---|
[16356] | 259 | }
|
---|
[14843] | 260 | if (node.Symbol is Sine) {
|
---|
[14950] | 261 | return sin(
|
---|
| 262 | ConvertToAutoDiff(node.GetSubtree(0)));
|
---|
[14843] | 263 | }
|
---|
| 264 | if (node.Symbol is Cosine) {
|
---|
[14950] | 265 | return cos(
|
---|
| 266 | ConvertToAutoDiff(node.GetSubtree(0)));
|
---|
[14843] | 267 | }
|
---|
| 268 | if (node.Symbol is Tangent) {
|
---|
[14950] | 269 | return tan(
|
---|
| 270 | ConvertToAutoDiff(node.GetSubtree(0)));
|
---|
[14843] | 271 | }
|
---|
[16676] | 272 | if (node.Symbol is HyperbolicTangent) {
|
---|
| 273 | return tanh(
|
---|
| 274 | ConvertToAutoDiff(node.GetSubtree(0)));
|
---|
| 275 | }
|
---|
[14843] | 276 | if (node.Symbol is Erf) {
|
---|
[14950] | 277 | return erf(
|
---|
| 278 | ConvertToAutoDiff(node.GetSubtree(0)));
|
---|
[14843] | 279 | }
|
---|
| 280 | if (node.Symbol is Norm) {
|
---|
[14950] | 281 | return norm(
|
---|
| 282 | ConvertToAutoDiff(node.GetSubtree(0)));
|
---|
[14843] | 283 | }
|
---|
| 284 | if (node.Symbol is StartSymbol) {
|
---|
[16508] | 285 | if (addLinearScalingTerms) {
|
---|
| 286 | // scaling variables α, β are given at the beginning of the parameter vector
|
---|
| 287 | var alpha = new AutoDiff.Variable();
|
---|
| 288 | var beta = new AutoDiff.Variable();
|
---|
| 289 | variables.Add(beta);
|
---|
| 290 | variables.Add(alpha);
|
---|
| 291 | var t = ConvertToAutoDiff(node.GetSubtree(0));
|
---|
| 292 | return t * alpha + beta;
|
---|
| 293 | } else return ConvertToAutoDiff(node.GetSubtree(0));
|
---|
[14843] | 294 | }
|
---|
[14950] | 295 | throw new ConversionException();
|
---|
[14843] | 296 | }
|
---|
| 297 |
|
---|
| 298 |
|
---|
| 299 | // for each factor variable value we need a parameter which represents a binary indicator for that variable & value combination
|
---|
| 300 | // each binary indicator is only necessary once. So we only create a parameter if this combination is not yet available
|
---|
| 301 | private static Term FindOrCreateParameter(Dictionary<DataForVariable, AutoDiff.Variable> parameters,
|
---|
| 302 | string varName, string varValue = "", int lag = 0) {
|
---|
| 303 | var data = new DataForVariable(varName, varValue, lag);
|
---|
| 304 |
|
---|
| 305 | AutoDiff.Variable par = null;
|
---|
| 306 | if (!parameters.TryGetValue(data, out par)) {
|
---|
| 307 | // not found -> create new parameter and entries in names and values lists
|
---|
| 308 | par = new AutoDiff.Variable();
|
---|
| 309 | parameters.Add(data, par);
|
---|
| 310 | }
|
---|
| 311 | return par;
|
---|
| 312 | }
|
---|
| 313 |
|
---|
| 314 | public static bool IsCompatible(ISymbolicExpressionTree tree) {
|
---|
| 315 | var containsUnknownSymbol = (
|
---|
| 316 | from n in tree.Root.GetSubtree(0).IterateNodesPrefix()
|
---|
| 317 | where
|
---|
[14950] | 318 | !(n.Symbol is Variable) &&
|
---|
| 319 | !(n.Symbol is BinaryFactorVariable) &&
|
---|
| 320 | !(n.Symbol is FactorVariable) &&
|
---|
| 321 | !(n.Symbol is LaggedVariable) &&
|
---|
| 322 | !(n.Symbol is Constant) &&
|
---|
| 323 | !(n.Symbol is Addition) &&
|
---|
| 324 | !(n.Symbol is Subtraction) &&
|
---|
| 325 | !(n.Symbol is Multiplication) &&
|
---|
| 326 | !(n.Symbol is Division) &&
|
---|
| 327 | !(n.Symbol is Logarithm) &&
|
---|
| 328 | !(n.Symbol is Exponential) &&
|
---|
| 329 | !(n.Symbol is SquareRoot) &&
|
---|
| 330 | !(n.Symbol is Square) &&
|
---|
| 331 | !(n.Symbol is Sine) &&
|
---|
| 332 | !(n.Symbol is Cosine) &&
|
---|
| 333 | !(n.Symbol is Tangent) &&
|
---|
[16676] | 334 | !(n.Symbol is HyperbolicTangent) &&
|
---|
[14950] | 335 | !(n.Symbol is Erf) &&
|
---|
| 336 | !(n.Symbol is Norm) &&
|
---|
[16356] | 337 | !(n.Symbol is StartSymbol) &&
|
---|
| 338 | !(n.Symbol is Absolute) &&
|
---|
[16360] | 339 | !(n.Symbol is AnalyticQuotient) &&
|
---|
[16356] | 340 | !(n.Symbol is Cube) &&
|
---|
| 341 | !(n.Symbol is CubeRoot)
|
---|
[14843] | 342 | select n).Any();
|
---|
| 343 | return !containsUnknownSymbol;
|
---|
| 344 | }
|
---|
[14950] | 345 | #region exception class
|
---|
| 346 | [Serializable]
|
---|
| 347 | public class ConversionException : Exception {
|
---|
| 348 |
|
---|
| 349 | public ConversionException() {
|
---|
| 350 | }
|
---|
| 351 |
|
---|
| 352 | public ConversionException(string message) : base(message) {
|
---|
| 353 | }
|
---|
| 354 |
|
---|
| 355 | public ConversionException(string message, Exception inner) : base(message, inner) {
|
---|
| 356 | }
|
---|
| 357 |
|
---|
| 358 | protected ConversionException(
|
---|
| 359 | SerializationInfo info,
|
---|
| 360 | StreamingContext context) : base(info, context) {
|
---|
| 361 | }
|
---|
| 362 | }
|
---|
| 363 | #endregion
|
---|
[14843] | 364 | }
|
---|
| 365 | }
|
---|