Free cookie consent management tool by TermsFeed Policy Generator

source: branches/2974_Constants_Optimization/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Converters/LinearModelToTreeConverter.cs @ 16456

Last change on this file since 16456 was 16085, checked in by mkommend, 6 years ago

#2940: Fixed linear model conversion if only factor variable coefficients are present and slightly refactored in according CreateTree method.

File size: 5.3 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using HeuristicLab.Common;
26using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
27
28namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
29  public static class LinearModelToTreeConverter {
30    public static ISymbolicExpressionTree CreateTree(string[] variableNames, double[] coefficients,
31      double @const = 0) {
32      return CreateTree(variableNames, new int[variableNames.Length], coefficients, @const);
33    }
34
35    public static ISymbolicExpressionTree CreateTree(
36      IEnumerable<KeyValuePair<string, IEnumerable<string>>> factors, double[] factorCoefficients,
37      string[] variableNames, double[] coefficients,
38      double @const = 0) {
39
40      if (factorCoefficients.Length == 0 && coefficients.Length == 0) throw new ArgumentException();
41
42      // Create tree for double variables
43      ISymbolicExpressionTree tree = null;     
44      if (coefficients.Length > 0) {
45        tree = CreateTree(variableNames, new int[variableNames.Length], coefficients, @const);
46        if (factorCoefficients.Length == 0) return tree;
47      }
48
49      // Create tree for string variables
50      ISymbolicExpressionTree factorTree = null;     
51      if (factorCoefficients.Length > 0) {
52        factorTree = CreateTree(factors, factorCoefficients, @const);
53        if (tree == null) return factorTree; 
54      }
55
56      // Combine both trees
57      ISymbolicExpressionTreeNode add = tree.Root.GetSubtree(0).GetSubtree(0);
58      foreach (var binFactorNode in factorTree.IterateNodesPrefix().OfType<BinaryFactorVariableTreeNode>())
59        add.InsertSubtree(add.SubtreeCount - 1, binFactorNode);
60      return tree;
61
62      throw new ArgumentException();
63    }
64
65    public static ISymbolicExpressionTree CreateTree(string[] variableNames, int[] lags, double[] coefficients,
66      double @const = 0) {
67      if (variableNames.Length == 0 ||
68        variableNames.Length != coefficients.Length ||
69        variableNames.Length != lags.Length)
70        throw new ArgumentException("The length of the variable names, lags, and coefficients vectors must match");
71
72      ISymbolicExpressionTree tree = new SymbolicExpressionTree(new ProgramRootSymbol().CreateTreeNode());
73      ISymbolicExpressionTreeNode startNode = new StartSymbol().CreateTreeNode();
74      tree.Root.AddSubtree(startNode);
75      ISymbolicExpressionTreeNode addition = new Addition().CreateTreeNode();
76      startNode.AddSubtree(addition);
77
78      for (int i = 0; i < variableNames.Length; i++) {
79        if (lags[i] == 0) {
80          VariableTreeNode vNode = (VariableTreeNode)new Variable().CreateTreeNode();
81          vNode.VariableName = variableNames[i];
82          vNode.Weight = coefficients[i];
83          addition.AddSubtree(vNode);
84        } else {
85          LaggedVariableTreeNode vNode = (LaggedVariableTreeNode)new LaggedVariable().CreateTreeNode();
86          vNode.VariableName = variableNames[i];
87          vNode.Weight = coefficients[i];
88          vNode.Lag = lags[i];
89          addition.AddSubtree(vNode);
90        }
91      }
92
93      if (!@const.IsAlmost(0.0)) {
94        ConstantTreeNode cNode = (ConstantTreeNode)new Constant().CreateTreeNode();
95        cNode.Value = @const;
96        addition.AddSubtree(cNode);
97      }
98      return tree;
99    }
100
101    public static ISymbolicExpressionTree CreateTree(IEnumerable<KeyValuePair<string, IEnumerable<string>>> factors,
102      double[] factorCoefficients,
103      double @const = 0) {
104
105      ISymbolicExpressionTree tree = new SymbolicExpressionTree(new ProgramRootSymbol().CreateTreeNode());
106      ISymbolicExpressionTreeNode startNode = new StartSymbol().CreateTreeNode();
107      tree.Root.AddSubtree(startNode);
108      ISymbolicExpressionTreeNode addition = new Addition().CreateTreeNode();
109      startNode.AddSubtree(addition);
110
111      int i = 0;
112      foreach (var factor in factors) {
113        var varName = factor.Key;
114        foreach (var factorValue in factor.Value) {
115          var node = (BinaryFactorVariableTreeNode)new BinaryFactorVariable().CreateTreeNode();
116          node.VariableValue = factorValue;
117          node.VariableName = varName;
118          node.Weight = factorCoefficients[i];
119          addition.AddSubtree(node);
120          i++;
121        }
122      }
123
124      if (!@const.IsAlmost(0.0)) {
125        ConstantTreeNode cNode = (ConstantTreeNode)new Constant().CreateTreeNode();
126        cNode.Value = @const;
127        addition.AddSubtree(cNode);
128      }
129      return tree;
130    }
131  }
132}
Note: See TracBrowser for help on using the repository browser.