Free cookie consent management tool by TermsFeed Policy Generator

source: branches/2974_Constants_Optimization/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/ConstantsOptimization/LMConstantsOptimizer.cs @ 18060

Last change on this file since 18060 was 17393, checked in by gkronber, 5 years ago

#2974: fix typos in comments

File size: 7.9 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
26
27namespace HeuristicLab.Problems.DataAnalysis.Symbolic.ConstantsOptimization {
28  public class LMConstantsOptimizer {
29
30    private LMConstantsOptimizer() { }
31
32    /// <summary>
33    /// Method to determine whether the numeric constants of the tree can be optimized. This depends primarily on the symbols occuring in the tree.
34    /// </summary>
35    /// <param name="tree">The tree that should be analyzed</param>
36    /// <returns>A flag indicating whether the numeric constants of the tree can be optimized</returns>
37    public static bool CanOptimizeConstants(ISymbolicExpressionTree tree) {
38      return AutoDiffConverter.IsCompatible(tree);
39    }
40
41    /// <summary>
42    /// Optimizes the numeric constants in a symbolic expression tree in place.
43    /// </summary>
44    /// <param name="tree">The tree for which the constants should be optimized</param>
45    /// <param name="dataset">The dataset containing the data.</param>
46    /// <param name="targetVariable">The target variable name.</param>
47    /// <param name="rows">The rows for which the data should be extracted.</param>
48    /// <param name="applyLinearScaling">A flag to determine whether linear scaling should be applied during the optimization</param>
49    /// <param name="maxIterations">The maximum number of iterations of the Levenberg-Marquardt algorithm.</param>
50    /// <returns></returns>
51    public static double OptimizeConstants(ISymbolicExpressionTree tree,
52      IDataset dataset, string targetVariable, IEnumerable<int> rows,
53      bool applyLinearScaling, int maxIterations = 10) {
54      if (tree == null) throw new ArgumentNullException("tree");
55      if (dataset == null) throw new ArgumentNullException("dataset");
56      if (!dataset.ContainsVariable(targetVariable)) throw new ArgumentException("The dataset does not contain the provided target variable.");
57
58      var allVariables = Util.ExtractVariables(tree);
59      var numericNodes = Util.ExtractNumericNodes(tree);
60
61      AutoDiff.IParametricCompiledTerm term;
62      if (!AutoDiffConverter.TryConvertToAutoDiff(tree, applyLinearScaling, numericNodes, allVariables, out term))
63        throw new NotSupportedException("Could not convert symbolic expression tree to an AutoDiff term due to not supported symbols used in the tree.");
64
65      // Variables of the symbolic expression tree correspond to parameters in the term.
66      // Hence if no parameters are present we can't do anything and R² stays the same.
67      if (term.Parameters.Count == 0) return 0.0;
68
69      var initialConstants = Util.ExtractConstants(numericNodes, applyLinearScaling);
70      double[] constants;
71      double[,] x = Util.ExtractData(dataset, allVariables, rows);
72      double[] y = dataset.GetDoubleValues(targetVariable, rows).ToArray();
73
74      var result = OptimizeConstants(term, initialConstants, x, y, maxIterations, out constants);
75      if (result > 0.0 && constants.Length != 0)
76        Util.UpdateConstants(numericNodes, constants);
77
78      return result;
79    }
80
81    /// <summary>
82    /// Optimizes the numeric coefficents of an AutoDiff Term using the Levenberg-Marquardt algorithm.
83    /// </summary>
84    /// <param name="term">The AutoDiff term for which the numeric coefficients should be optimized.</param>
85    /// <param name="initialConstants">The starting values for the numeric coefficients.</param>
86    /// <param name="x">The input data for the optimization.</param>
87    /// <param name="y">The target values for the optimization.</param>
88    /// <param name="maxIterations">The maximum number of iterations of the Levenberg-Marquardt</param>
89    /// <param name="constants">The optimized constants.</param>
90    /// <param name="LM_IterationCallback">An optional callback for detailed analysis that is called in each algorithm iteration.</param>
91    /// <returns>The R² of the term evaluated on the input data x and the target data y using the optimized constants</returns>
92    public static double OptimizeConstants(AutoDiff.IParametricCompiledTerm term, double[] initialConstants, double[,] x, double[] y,
93      int maxIterations, out double[] constants, Action<double[], double, object> LM_IterationCallback = null) {
94
95      if (term.Parameters.Count == 0) {
96        constants = new double[0];
97        return 0.0;
98      }
99
100      var optimizedConstants = (double[])initialConstants.Clone();
101      int numberOfRows = x.GetLength(0);
102      int numberOfColumns = x.GetLength(1);
103      int numberOfConstants = optimizedConstants.Length;
104
105      alglib.minlmstate state;
106      alglib.minlmreport rep;
107      alglib.ndimensional_rep xrep = (p, f, obj) => LM_IterationCallback(p, f, obj);
108
109      try {
110        alglib.minlmcreatevj(numberOfRows, optimizedConstants, state: out state);
111        alglib.minlmsetcond(state, 0.0, 0.0, 0.0, maxIterations);
112        alglib.minlmsetxrep(state, LM_IterationCallback != null);
113        alglib.minlmoptimize(state, Evaluate, EvaluateGradient, xrep, new object[] { term, x, y });
114        alglib.minlmresults(state, out optimizedConstants, out rep);
115      } catch (ArithmeticException) {
116        constants = new double[0];
117        return double.NaN;
118      } catch (alglib.alglibexception) {
119        constants = new double[0];
120        return double.NaN;
121      }
122
123      // error
124      if (rep.terminationtype < 0) {
125        constants = initialConstants; return 0;
126      }
127      constants = optimizedConstants;
128
129      // calculate prediction with optimized constants to calculate R²
130      double[] pred = new double[numberOfRows];
131      double[] zeros = new double[numberOfRows];
132      Evaluate(constants, pred, new object[] { term, x, zeros });
133      var r = OnlinePearsonsRCalculator.Calculate(pred, y, out OnlineCalculatorError error);
134      if (error != OnlineCalculatorError.None) r = 0;
135      return r * r;
136    }
137
138    private static void Evaluate(double[] c, double[] fi, object o) {
139      var objs = (object[])o;
140      AutoDiff.IParametricCompiledTerm term = (AutoDiff.IParametricCompiledTerm)objs[0];
141      var x = (double[,])objs[1];
142      var y = (double[])objs[2];
143      double[] xi = new double[x.GetLength(1)];
144      for (int i = 0; i < fi.Length; i++) {
145        // copy data row
146        for (int j = 0; j < xi.Length; j++) xi[j] = x[i, j];
147        fi[i] = term.Evaluate(c, xi) - y[i];
148      }
149    }
150
151    private static void EvaluateGradient(double[] c, double[] fi, double[,] jac, object o) {
152      var objs = (object[])o;
153      AutoDiff.IParametricCompiledTerm term = (AutoDiff.IParametricCompiledTerm)objs[0];
154      var x = (double[,])objs[1];
155      var y = (double[])objs[2];
156      double[] xi = new double[x.GetLength(1)];
157      for (int i = 0; i < fi.Length; i++) {
158        // copy data row
159        for (int j = 0; j < xi.Length; j++) xi[j] = x[i, j];
160        Tuple<double[], double> result = term.Differentiate(c, xi);
161        fi[i] = result.Item2 - y[i];
162        var g = result.Item1;
163        // copy gradient to Jacobian
164        for (int j = 0; j < c.Length; j++) {
165          jac[i, j] = g[j];
166        }
167      }
168    }
169  }
170}
Note: See TracBrowser for help on using the repository browser.