1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using System.Runtime.Serialization;
|
---|
26 | using AutoDiff;
|
---|
27 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
28 |
|
---|
29 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.ConstantsOptimization{
|
---|
30 | public class AutoDiffConverter {
|
---|
31 |
|
---|
32 | /// <summary>
|
---|
33 | /// Converts a symbolic expression tree into a parametetric AutoDiff term.
|
---|
34 | /// </summary>
|
---|
35 | /// <param name="tree">The tree the should be converted.</param>
|
---|
36 | /// <param name="addLinearScalingTerms">A flag that determines whether linear scaling terms should be added to the parametric term.</param>
|
---|
37 | /// <param name="numericNodes">The nodes that contain numeric coefficents that should be added as variables in the term.</param>
|
---|
38 | /// <param name="variableData">The variable information that is used to create parameters in the term.</param>
|
---|
39 | /// <param name="autoDiffTerm">The resulting parametric AutoDiff term.</param>
|
---|
40 | /// <returns>A flag to see if the conversion has succeeded.</returns>
|
---|
41 | public static bool TryConvertToAutoDiff(ISymbolicExpressionTree tree, bool addLinearScalingTerms,
|
---|
42 | IEnumerable<ISymbolicExpressionTreeNode> numericNodes, IEnumerable<VariableData> variableData,
|
---|
43 | out IParametricCompiledTerm autoDiffTerm) {
|
---|
44 | // use a transformator object which holds the state (variable list, parameter list, ...) for recursive transformation of the tree
|
---|
45 | var transformator = new AutoDiffConverter(numericNodes, variableData);
|
---|
46 | AutoDiff.Term term;
|
---|
47 |
|
---|
48 | try {
|
---|
49 | term = transformator.ConvertToAutoDiff(tree.Root.GetSubtree(0));
|
---|
50 | if (addLinearScalingTerms) {
|
---|
51 | // scaling variables α, β are given at the end of the parameter vector
|
---|
52 | var alpha = new AutoDiff.Variable();
|
---|
53 | var beta = new AutoDiff.Variable();
|
---|
54 |
|
---|
55 | term = term * alpha + beta;
|
---|
56 |
|
---|
57 | transformator.variables.Add(alpha);
|
---|
58 | transformator.variables.Add(beta);
|
---|
59 | }
|
---|
60 | var compiledTerm = term.Compile(transformator.variables.ToArray(), transformator.parameters.Values.ToArray());
|
---|
61 | autoDiffTerm = compiledTerm;
|
---|
62 | return true;
|
---|
63 | } catch (ConversionException) {
|
---|
64 | autoDiffTerm = null;
|
---|
65 | }
|
---|
66 | return false;
|
---|
67 | }
|
---|
68 |
|
---|
69 | // state for recursive transformation of trees
|
---|
70 | private readonly HashSet<ISymbolicExpressionTreeNode> nodesForOptimization;
|
---|
71 | private readonly Dictionary<VariableData, AutoDiff.Variable> parameters;
|
---|
72 | private readonly List<AutoDiff.Variable> variables;
|
---|
73 |
|
---|
74 | private AutoDiffConverter(IEnumerable<ISymbolicExpressionTreeNode> nodesForOptimization, IEnumerable<VariableData> variableData) {
|
---|
75 | this.nodesForOptimization = new HashSet<ISymbolicExpressionTreeNode>(nodesForOptimization);
|
---|
76 | this.parameters = variableData.ToDictionary(k => k, v => new AutoDiff.Variable());
|
---|
77 | this.variables = new List<AutoDiff.Variable>();
|
---|
78 | }
|
---|
79 |
|
---|
80 | private AutoDiff.Term ConvertToAutoDiff(ISymbolicExpressionTreeNode node) {
|
---|
81 | if (node.Symbol is Constant) {
|
---|
82 | var constantNode = node as ConstantTreeNode;
|
---|
83 | var value = constantNode.Value;
|
---|
84 | if (nodesForOptimization.Contains(node)) {
|
---|
85 | AutoDiff.Variable var = new AutoDiff.Variable();
|
---|
86 | variables.Add(var);
|
---|
87 | return var;
|
---|
88 | } else {
|
---|
89 | return value;
|
---|
90 | }
|
---|
91 | }
|
---|
92 | if (node.Symbol is Variable || node.Symbol is BinaryFactorVariable) {
|
---|
93 | var varNode = node as VariableTreeNodeBase;
|
---|
94 | var factorVarNode = node as BinaryFactorVariableTreeNode;
|
---|
95 | // factor variable values are only 0 or 1 and set in x accordingly
|
---|
96 | var varValue = factorVarNode != null ? factorVarNode.VariableValue : string.Empty;
|
---|
97 | var data = new VariableData(varNode.VariableName, varValue, 0);
|
---|
98 | var par = parameters[data];
|
---|
99 | var value = varNode.Weight;
|
---|
100 |
|
---|
101 | if (nodesForOptimization.Contains(node)) {
|
---|
102 | AutoDiff.Variable var = new AutoDiff.Variable();
|
---|
103 | variables.Add(var);
|
---|
104 | return AutoDiff.TermBuilder.Product(var, par);
|
---|
105 | } else {
|
---|
106 | return AutoDiff.TermBuilder.Product(value, par);
|
---|
107 | }
|
---|
108 | }
|
---|
109 | if (node.Symbol is FactorVariable) {
|
---|
110 | var factorVarNode = node as FactorVariableTreeNode;
|
---|
111 | var products = new List<Term>();
|
---|
112 | foreach (var variableValue in factorVarNode.Symbol.GetVariableValues(factorVarNode.VariableName)) {
|
---|
113 | var data = new VariableData(factorVarNode.VariableName, variableValue, 0);
|
---|
114 | var par = parameters[data];
|
---|
115 | var value = factorVarNode.GetValue(variableValue);
|
---|
116 |
|
---|
117 | if (nodesForOptimization.Contains(node)) {
|
---|
118 | var wVar = new AutoDiff.Variable();
|
---|
119 | variables.Add(wVar);
|
---|
120 |
|
---|
121 | products.Add(AutoDiff.TermBuilder.Product(wVar, par));
|
---|
122 | } else {
|
---|
123 | products.Add(AutoDiff.TermBuilder.Product(value, par));
|
---|
124 | }
|
---|
125 | }
|
---|
126 | return AutoDiff.TermBuilder.Sum(products);
|
---|
127 | }
|
---|
128 | if (node.Symbol is LaggedVariable) {
|
---|
129 | var varNode = node as LaggedVariableTreeNode;
|
---|
130 | var data = new VariableData(varNode.VariableName, string.Empty, varNode.Lag);
|
---|
131 | var par = parameters[data];
|
---|
132 | var value = varNode.Weight;
|
---|
133 |
|
---|
134 | if (nodesForOptimization.Contains(node)) {
|
---|
135 | AutoDiff.Variable var = new AutoDiff.Variable();
|
---|
136 | variables.Add(var);
|
---|
137 | return AutoDiff.TermBuilder.Product(var, par);
|
---|
138 | } else {
|
---|
139 | return AutoDiff.TermBuilder.Product(value, par);
|
---|
140 | }
|
---|
141 |
|
---|
142 | }
|
---|
143 | if (node.Symbol is Addition) {
|
---|
144 | List<AutoDiff.Term> terms = new List<Term>();
|
---|
145 | foreach (var subTree in node.Subtrees) {
|
---|
146 | terms.Add(ConvertToAutoDiff(subTree));
|
---|
147 | }
|
---|
148 | return AutoDiff.TermBuilder.Sum(terms);
|
---|
149 | }
|
---|
150 | if (node.Symbol is Subtraction) {
|
---|
151 | List<AutoDiff.Term> terms = new List<Term>();
|
---|
152 | for (int i = 0; i < node.SubtreeCount; i++) {
|
---|
153 | AutoDiff.Term t = ConvertToAutoDiff(node.GetSubtree(i));
|
---|
154 | if (i > 0) t = -t;
|
---|
155 | terms.Add(t);
|
---|
156 | }
|
---|
157 | if (terms.Count == 1) return -terms[0];
|
---|
158 | else return AutoDiff.TermBuilder.Sum(terms);
|
---|
159 | }
|
---|
160 | if (node.Symbol is Multiplication) {
|
---|
161 | List<AutoDiff.Term> terms = new List<Term>();
|
---|
162 | foreach (var subTree in node.Subtrees) {
|
---|
163 | terms.Add(ConvertToAutoDiff(subTree));
|
---|
164 | }
|
---|
165 | if (terms.Count == 1) return terms[0];
|
---|
166 | else return terms.Aggregate((a, b) => new AutoDiff.Product(a, b));
|
---|
167 | }
|
---|
168 | if (node.Symbol is Division) {
|
---|
169 | List<AutoDiff.Term> terms = new List<Term>();
|
---|
170 | foreach (var subTree in node.Subtrees) {
|
---|
171 | terms.Add(ConvertToAutoDiff(subTree));
|
---|
172 | }
|
---|
173 | if (terms.Count == 1) return 1.0 / terms[0];
|
---|
174 | else return terms.Aggregate((a, b) => new AutoDiff.Product(a, 1.0 / b));
|
---|
175 | }
|
---|
176 | if (node.Symbol is Absolute) {
|
---|
177 | var x1 = ConvertToAutoDiff(node.GetSubtree(0));
|
---|
178 | return abs(x1);
|
---|
179 | }
|
---|
180 | if (node.Symbol is AnalyticQuotient) {
|
---|
181 | var x1 = ConvertToAutoDiff(node.GetSubtree(0));
|
---|
182 | var x2 = ConvertToAutoDiff(node.GetSubtree(1));
|
---|
183 | return x1 / (TermBuilder.Power(1 + x2 * x2, 0.5));
|
---|
184 | }
|
---|
185 | if (node.Symbol is Logarithm) {
|
---|
186 | return AutoDiff.TermBuilder.Log(
|
---|
187 | ConvertToAutoDiff(node.GetSubtree(0)));
|
---|
188 | }
|
---|
189 | if (node.Symbol is Exponential) {
|
---|
190 | return AutoDiff.TermBuilder.Exp(
|
---|
191 | ConvertToAutoDiff(node.GetSubtree(0)));
|
---|
192 | }
|
---|
193 | if (node.Symbol is Square) {
|
---|
194 | return AutoDiff.TermBuilder.Power(
|
---|
195 | ConvertToAutoDiff(node.GetSubtree(0)), 2.0);
|
---|
196 | }
|
---|
197 | if (node.Symbol is SquareRoot) {
|
---|
198 | return AutoDiff.TermBuilder.Power(
|
---|
199 | ConvertToAutoDiff(node.GetSubtree(0)), 0.5);
|
---|
200 | }
|
---|
201 | if (node.Symbol is Cube) {
|
---|
202 | return AutoDiff.TermBuilder.Power(
|
---|
203 | ConvertToAutoDiff(node.GetSubtree(0)), 3.0);
|
---|
204 | }
|
---|
205 | if (node.Symbol is CubeRoot) {
|
---|
206 | return AutoDiff.TermBuilder.Power(
|
---|
207 | ConvertToAutoDiff(node.GetSubtree(0)), 1.0 / 3.0);
|
---|
208 | }
|
---|
209 | if (node.Symbol is Sine) {
|
---|
210 | return sin(
|
---|
211 | ConvertToAutoDiff(node.GetSubtree(0)));
|
---|
212 | }
|
---|
213 | if (node.Symbol is Cosine) {
|
---|
214 | return cos(
|
---|
215 | ConvertToAutoDiff(node.GetSubtree(0)));
|
---|
216 | }
|
---|
217 | if (node.Symbol is Tangent) {
|
---|
218 | return tan(
|
---|
219 | ConvertToAutoDiff(node.GetSubtree(0)));
|
---|
220 | }
|
---|
221 | if (node.Symbol is Erf) {
|
---|
222 | return erf(
|
---|
223 | ConvertToAutoDiff(node.GetSubtree(0)));
|
---|
224 | }
|
---|
225 | if (node.Symbol is Norm) {
|
---|
226 | return norm(
|
---|
227 | ConvertToAutoDiff(node.GetSubtree(0)));
|
---|
228 | }
|
---|
229 | if (node.Symbol is StartSymbol) {
|
---|
230 | return ConvertToAutoDiff(node.GetSubtree(0));
|
---|
231 | }
|
---|
232 | throw new ConversionException();
|
---|
233 | }
|
---|
234 |
|
---|
235 | #region derivations of functions
|
---|
236 | // create function factory for arctangent
|
---|
237 | private static readonly Func<Term, UnaryFunc> arctan = UnaryFunc.Factory(
|
---|
238 | eval: Math.Atan,
|
---|
239 | diff: x => 1 / (1 + x * x));
|
---|
240 |
|
---|
241 | private static readonly Func<Term, UnaryFunc> sin = UnaryFunc.Factory(
|
---|
242 | eval: Math.Sin,
|
---|
243 | diff: Math.Cos);
|
---|
244 |
|
---|
245 | private static readonly Func<Term, UnaryFunc> cos = UnaryFunc.Factory(
|
---|
246 | eval: Math.Cos,
|
---|
247 | diff: x => -Math.Sin(x));
|
---|
248 |
|
---|
249 | private static readonly Func<Term, UnaryFunc> tan = UnaryFunc.Factory(
|
---|
250 | eval: Math.Tan,
|
---|
251 | diff: x => 1 + Math.Tan(x) * Math.Tan(x));
|
---|
252 |
|
---|
253 | private static readonly Func<Term, UnaryFunc> erf = UnaryFunc.Factory(
|
---|
254 | eval: alglib.errorfunction,
|
---|
255 | diff: x => 2.0 * Math.Exp(-(x * x)) / Math.Sqrt(Math.PI));
|
---|
256 |
|
---|
257 | private static readonly Func<Term, UnaryFunc> norm = UnaryFunc.Factory(
|
---|
258 | eval: alglib.normaldistribution,
|
---|
259 | diff: x => -(Math.Exp(-(x * x)) * Math.Sqrt(Math.Exp(x * x)) * x) / Math.Sqrt(2 * Math.PI));
|
---|
260 |
|
---|
261 | private static readonly Func<Term, UnaryFunc> abs = UnaryFunc.Factory(
|
---|
262 | eval: Math.Abs,
|
---|
263 | diff: x => Math.Sign(x)
|
---|
264 | );
|
---|
265 |
|
---|
266 | #endregion
|
---|
267 |
|
---|
268 |
|
---|
269 | public static bool IsCompatible(ISymbolicExpressionTree tree) {
|
---|
270 | var containsUnknownSymbol = (
|
---|
271 | from n in tree.Root.GetSubtree(0).IterateNodesPrefix()
|
---|
272 | where
|
---|
273 | !(n.Symbol is Variable) &&
|
---|
274 | !(n.Symbol is BinaryFactorVariable) &&
|
---|
275 | !(n.Symbol is FactorVariable) &&
|
---|
276 | !(n.Symbol is LaggedVariable) &&
|
---|
277 | !(n.Symbol is Constant) &&
|
---|
278 | !(n.Symbol is Addition) &&
|
---|
279 | !(n.Symbol is Subtraction) &&
|
---|
280 | !(n.Symbol is Multiplication) &&
|
---|
281 | !(n.Symbol is Division) &&
|
---|
282 | !(n.Symbol is Logarithm) &&
|
---|
283 | !(n.Symbol is Exponential) &&
|
---|
284 | !(n.Symbol is SquareRoot) &&
|
---|
285 | !(n.Symbol is Square) &&
|
---|
286 | !(n.Symbol is Sine) &&
|
---|
287 | !(n.Symbol is Cosine) &&
|
---|
288 | !(n.Symbol is Tangent) &&
|
---|
289 | !(n.Symbol is Erf) &&
|
---|
290 | !(n.Symbol is Norm) &&
|
---|
291 | !(n.Symbol is StartSymbol) &&
|
---|
292 | !(n.Symbol is Absolute) &&
|
---|
293 | !(n.Symbol is AnalyticQuotient) &&
|
---|
294 | !(n.Symbol is Cube) &&
|
---|
295 | !(n.Symbol is CubeRoot)
|
---|
296 | select n).Any();
|
---|
297 | return !containsUnknownSymbol;
|
---|
298 | }
|
---|
299 | #region exception class
|
---|
300 | [Serializable]
|
---|
301 | public class ConversionException : Exception {
|
---|
302 | public ConversionException() { }
|
---|
303 | public ConversionException(string message) : base(message) { }
|
---|
304 | public ConversionException(string message, Exception inner) : base(message, inner) { }
|
---|
305 | protected ConversionException(
|
---|
306 | SerializationInfo info,
|
---|
307 | StreamingContext context) : base(info, context) {
|
---|
308 | }
|
---|
309 | }
|
---|
310 | #endregion
|
---|
311 | }
|
---|
312 | }
|
---|