1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
26 | using static HeuristicLab.Problems.DataAnalysis.Symbolic.TreeToAutoDiffTermConverter;
|
---|
27 |
|
---|
28 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.ConstantsOptimization {
|
---|
29 | public static class Util {
|
---|
30 |
|
---|
31 | public static double[,] ExtractData(IDataset dataset, IEnumerable<DataForVariable> variables, IEnumerable<int> rows) {
|
---|
32 | var x = new double[rows.Count(), variables.Count()];
|
---|
33 |
|
---|
34 | int row = 0;
|
---|
35 | foreach (var r in rows) {
|
---|
36 | int col = 0;
|
---|
37 | foreach (var variable in variables) {
|
---|
38 | if (dataset.VariableHasType<double>(variable.variableName)) {
|
---|
39 | x[row, col] = dataset.GetDoubleValue(variable.variableName, r + variable.lag);
|
---|
40 | } else if (dataset.VariableHasType<string>(variable.variableName)) {
|
---|
41 | x[row, col] = dataset.GetStringValue(variable.variableName, r) == variable.variableValue ? 1 : 0;
|
---|
42 | } else throw new InvalidProgramException("found a variable of unknown type");
|
---|
43 | col++;
|
---|
44 | }
|
---|
45 | row++;
|
---|
46 | }
|
---|
47 | return x;
|
---|
48 | }
|
---|
49 |
|
---|
50 | public static Dictionary<DataForVariable, AutoDiff.Variable> ExtractParameters(IDataset dataset) {
|
---|
51 | var parameters = new Dictionary<DataForVariable, AutoDiff.Variable>();
|
---|
52 | foreach (var doubleVariable in dataset.DoubleVariables) {
|
---|
53 | var data = new DataForVariable(doubleVariable, string.Empty, 0);
|
---|
54 | var param = new AutoDiff.Variable();
|
---|
55 | parameters.Add(data, param);
|
---|
56 | }
|
---|
57 |
|
---|
58 | foreach (var stringVariable in dataset.StringVariables) {
|
---|
59 | foreach (var stringValue in dataset.GetStringValues(stringVariable).Distinct()) {
|
---|
60 | var data = new DataForVariable(stringVariable, stringValue, 0);
|
---|
61 | var param = new AutoDiff.Variable();
|
---|
62 | parameters.Add(data, param);
|
---|
63 | }
|
---|
64 | }
|
---|
65 | return parameters;
|
---|
66 | }
|
---|
67 |
|
---|
68 | public static double[] ExtractConstants(ISymbolicExpressionTree tree) {
|
---|
69 | var constants = new List<double>();
|
---|
70 | foreach (var node in tree.IterateNodesPrefix().OfType<SymbolicExpressionTreeTerminalNode>()) {
|
---|
71 | ConstantTreeNode constantTreeNode = node as ConstantTreeNode;
|
---|
72 | VariableTreeNodeBase variableTreeNodeBase = node as VariableTreeNodeBase;
|
---|
73 | FactorVariableTreeNode factorVarTreeNode = node as FactorVariableTreeNode;
|
---|
74 | if (constantTreeNode != null)
|
---|
75 | constants.Add(constantTreeNode.Value);
|
---|
76 | else if (variableTreeNodeBase != null)
|
---|
77 | constants.Add(variableTreeNodeBase.Weight);
|
---|
78 | else if (factorVarTreeNode != null) {
|
---|
79 | for (int j = 0; j < factorVarTreeNode.Weights.Length; j++)
|
---|
80 | constants.Add(factorVarTreeNode.Weights[j]);
|
---|
81 | }
|
---|
82 | }
|
---|
83 | return constants.ToArray();
|
---|
84 | }
|
---|
85 |
|
---|
86 | public static void UpdateConstants(ISymbolicExpressionTree tree, double[] constants) {
|
---|
87 | int i = 0;
|
---|
88 | foreach (var node in tree.Root.IterateNodesPrefix().OfType<SymbolicExpressionTreeTerminalNode>()) {
|
---|
89 | ConstantTreeNode constantTreeNode = node as ConstantTreeNode;
|
---|
90 | VariableTreeNodeBase variableTreeNodeBase = node as VariableTreeNodeBase;
|
---|
91 | FactorVariableTreeNode factorVarTreeNode = node as FactorVariableTreeNode;
|
---|
92 | if (constantTreeNode != null)
|
---|
93 | constantTreeNode.Value = constants[i++];
|
---|
94 | else if (variableTreeNodeBase != null)
|
---|
95 | variableTreeNodeBase.Weight = constants[i++];
|
---|
96 | else if (factorVarTreeNode != null) {
|
---|
97 | for (int j = 0; j < factorVarTreeNode.Weights.Length; j++)
|
---|
98 | factorVarTreeNode.Weights[j] = constants[i++];
|
---|
99 | }
|
---|
100 | }
|
---|
101 | }
|
---|
102 | }
|
---|
103 | }
|
---|