1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Drawing;
|
---|
25 | using System.Linq;
|
---|
26 | using HeuristicLab.Common;
|
---|
27 | using HeuristicLab.Core;
|
---|
28 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
29 | using HeuristicLab.Problems.DataAnalysis;
|
---|
30 |
|
---|
31 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
32 | /// <summary>
|
---|
33 | /// Represents a linear regression model
|
---|
34 | /// </summary>
|
---|
35 | [StorableClass]
|
---|
36 | [Item("Linear Regression Model", "Represents a linear regression model.")]
|
---|
37 | public sealed class LinearRegressionModel : RegressionModel, IConfidenceRegressionModel {
|
---|
38 | public static new Image StaticItemImage {
|
---|
39 | get { return HeuristicLab.Common.Resources.VSImageLibrary.Function; }
|
---|
40 | }
|
---|
41 |
|
---|
42 | [Storable]
|
---|
43 | public double[,] C {
|
---|
44 | get; private set;
|
---|
45 | }
|
---|
46 | [Storable]
|
---|
47 | public double[] W {
|
---|
48 | get; private set;
|
---|
49 | }
|
---|
50 |
|
---|
51 | [Storable]
|
---|
52 | public double NoiseSigma {
|
---|
53 | get; private set;
|
---|
54 | }
|
---|
55 |
|
---|
56 | public override IEnumerable<string> VariablesUsedForPrediction {
|
---|
57 | get { return doubleVariables.Union(factorVariables.Select(f => f.Key)); }
|
---|
58 | }
|
---|
59 |
|
---|
60 | [Storable]
|
---|
61 | private string[] doubleVariables;
|
---|
62 | [Storable]
|
---|
63 | private List<KeyValuePair<string, IEnumerable<string>>> factorVariables;
|
---|
64 |
|
---|
65 | /// <summary>
|
---|
66 | /// Enumerable of variable names used by the model including one-hot-encoded of factor variables.
|
---|
67 | /// </summary>
|
---|
68 | public IEnumerable<string> ParameterNames {
|
---|
69 | get {
|
---|
70 | return factorVariables.SelectMany(kvp => kvp.Value.Select(factorVal => $"{kvp.Key}={factorVal}"))
|
---|
71 | .Concat(doubleVariables)
|
---|
72 | .Concat(new[] { "<const>" });
|
---|
73 | }
|
---|
74 | }
|
---|
75 |
|
---|
76 | [StorableConstructor]
|
---|
77 | private LinearRegressionModel(bool deserializing)
|
---|
78 | : base(deserializing) {
|
---|
79 | }
|
---|
80 | private LinearRegressionModel(LinearRegressionModel original, Cloner cloner)
|
---|
81 | : base(original, cloner) {
|
---|
82 | this.W = original.W;
|
---|
83 | this.C = original.C;
|
---|
84 | this.NoiseSigma = original.NoiseSigma;
|
---|
85 |
|
---|
86 | doubleVariables = (string[])original.doubleVariables.Clone();
|
---|
87 | this.factorVariables = original.factorVariables.Select(kvp => new KeyValuePair<string, IEnumerable<string>>(kvp.Key, new List<string>(kvp.Value))).ToList();
|
---|
88 | }
|
---|
89 | public LinearRegressionModel(double[] w, double[,] covariance, double noiseSigma, string targetVariable, IEnumerable<string> doubleInputVariables, IEnumerable<KeyValuePair<string, IEnumerable<string>>> factorVariables)
|
---|
90 | : base(targetVariable) {
|
---|
91 | this.name = ItemName;
|
---|
92 | this.description = ItemDescription;
|
---|
93 | this.W = new double[w.Length];
|
---|
94 | Array.Copy(w, W, w.Length);
|
---|
95 | this.C = new double[covariance.GetLength(0), covariance.GetLength(1)];
|
---|
96 | Array.Copy(covariance, C, covariance.Length);
|
---|
97 | this.NoiseSigma = noiseSigma;
|
---|
98 | this.doubleVariables = doubleInputVariables.ToArray();
|
---|
99 | // clone
|
---|
100 | this.factorVariables = factorVariables.Select(kvp => new KeyValuePair<string, IEnumerable<string>>(kvp.Key, new List<string>(kvp.Value))).ToList();
|
---|
101 | }
|
---|
102 |
|
---|
103 | [StorableHook(HookType.AfterDeserialization)]
|
---|
104 | private void AfterDeserialization() {
|
---|
105 | }
|
---|
106 |
|
---|
107 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
108 | return new LinearRegressionModel(this, cloner);
|
---|
109 | }
|
---|
110 |
|
---|
111 | public override IEnumerable<double> GetEstimatedValues(IDataset dataset, IEnumerable<int> rows) {
|
---|
112 | double[,] inputData = dataset.ToArray(doubleVariables, rows);
|
---|
113 | double[,] factorData = dataset.ToArray(factorVariables, rows);
|
---|
114 |
|
---|
115 | inputData = factorData.HorzCat(inputData);
|
---|
116 |
|
---|
117 | int n = inputData.GetLength(0);
|
---|
118 | int columns = inputData.GetLength(1);
|
---|
119 |
|
---|
120 | for (int row = 0; row < n; row++) {
|
---|
121 | double p = 0.0;
|
---|
122 | for (int column = 0; column < columns; column++) {
|
---|
123 | p += W[column] * inputData[row, column];
|
---|
124 | }
|
---|
125 | p += W[columns];
|
---|
126 | yield return p;
|
---|
127 | }
|
---|
128 | }
|
---|
129 |
|
---|
130 | public IEnumerable<double> GetEstimatedVariances(IDataset dataset, IEnumerable<int> rows) {
|
---|
131 | double[,] inputData = dataset.ToArray(doubleVariables, rows);
|
---|
132 | double[,] factorData = dataset.ToArray(factorVariables, rows);
|
---|
133 |
|
---|
134 | inputData = factorData.HorzCat(inputData);
|
---|
135 |
|
---|
136 | int n = inputData.GetLength(0);
|
---|
137 | int columns = inputData.GetLength(1);
|
---|
138 |
|
---|
139 | double[] d = new double[C.GetLength(0)];
|
---|
140 |
|
---|
141 | for (int row = 0; row < n; row++) {
|
---|
142 | for (int column = 0; column < columns; column++) {
|
---|
143 | d[column] = inputData[row, column];
|
---|
144 | }
|
---|
145 | d[columns] = 1;
|
---|
146 |
|
---|
147 | double var = 0.0;
|
---|
148 | for (int i = 0; i < d.Length; i++) {
|
---|
149 | for (int j = 0; j < d.Length; j++) {
|
---|
150 | var += d[i] * C[i, j] * d[j];
|
---|
151 | }
|
---|
152 | }
|
---|
153 | yield return var + NoiseSigma * NoiseSigma;
|
---|
154 | }
|
---|
155 | }
|
---|
156 |
|
---|
157 | public override IRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData) {
|
---|
158 | return new ConfidenceRegressionSolution(this, new RegressionProblemData(problemData));
|
---|
159 | }
|
---|
160 | }
|
---|
161 | }
|
---|