[7154] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[17210] | 3 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[7154] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
[14843] | 22 | using System;
|
---|
[7154] | 23 | using System.Collections.Generic;
|
---|
[14843] | 24 | using System.Linq;
|
---|
[7154] | 25 |
|
---|
| 26 | namespace HeuristicLab.Problems.DataAnalysis {
|
---|
| 27 | public static class DatasetExtensions {
|
---|
[14843] | 28 | public static double[,] ToArray(this IDataset dataset, IEnumerable<string> variables, IEnumerable<int> rows) {
|
---|
| 29 | return ToArray(dataset,
|
---|
| 30 | variables,
|
---|
| 31 | transformations: variables.Select(_ => (ITransformation<double>)null), // no transform
|
---|
| 32 | rows: rows);
|
---|
| 33 | }
|
---|
| 34 | public static double[,] ToArray(this IDataset dataset, IEnumerable<string> variables,
|
---|
| 35 | IEnumerable<ITransformation<double>> transformations, IEnumerable<int> rows) {
|
---|
| 36 | string[] variablesArr = variables.ToArray();
|
---|
| 37 | int[] rowsArr = rows.ToArray();
|
---|
| 38 | ITransformation<double>[] transformArr = transformations.ToArray();
|
---|
| 39 | if (transformArr.Length != variablesArr.Length)
|
---|
| 40 | throw new ArgumentException("Number of variables and number of transformations must match.");
|
---|
| 41 |
|
---|
| 42 | double[,] matrix = new double[rowsArr.Length, variablesArr.Length];
|
---|
| 43 |
|
---|
| 44 | for (int i = 0; i < variablesArr.Length; i++) {
|
---|
| 45 | var origValues = dataset.GetDoubleValues(variablesArr[i], rowsArr);
|
---|
| 46 | var values = transformArr[i] != null ? transformArr[i].Apply(origValues) : origValues;
|
---|
| 47 | int row = 0;
|
---|
| 48 | foreach (var value in values) {
|
---|
| 49 | matrix[row, i] = value;
|
---|
| 50 | row++;
|
---|
| 51 | }
|
---|
[7154] | 52 | }
|
---|
[14843] | 53 |
|
---|
| 54 | return matrix;
|
---|
[7154] | 55 | }
|
---|
[14843] | 56 |
|
---|
| 57 | /// <summary>
|
---|
| 58 | /// Prepares a binary data matrix from a number of factors and specified factor values
|
---|
| 59 | /// </summary>
|
---|
| 60 | /// <param name="dataset">A dataset that contains the variable values</param>
|
---|
| 61 | /// <param name="factorVariables">An enumerable of categorical variables (factors). For each variable an enumerable of values must be specified.</param>
|
---|
| 62 | /// <param name="rows">An enumerable of row indices for the dataset</param>
|
---|
| 63 | /// <returns></returns>
|
---|
| 64 | /// <remarks>Factor variables (categorical variables) are split up into multiple binary variables one for each specified value.</remarks>
|
---|
| 65 | public static double[,] ToArray(
|
---|
| 66 | this IDataset dataset,
|
---|
| 67 | IEnumerable<KeyValuePair<string, IEnumerable<string>>> factorVariables,
|
---|
| 68 | IEnumerable<int> rows) {
|
---|
| 69 | // check input variables. Only string variables are allowed.
|
---|
| 70 | var invalidInputs =
|
---|
| 71 | factorVariables.Select(kvp => kvp.Key).Where(name => !dataset.VariableHasType<string>(name));
|
---|
| 72 | if (invalidInputs.Any())
|
---|
| 73 | throw new NotSupportedException("Unsupported inputs: " + string.Join(", ", invalidInputs));
|
---|
| 74 |
|
---|
| 75 | int numBinaryColumns = factorVariables.Sum(kvp => kvp.Value.Count());
|
---|
| 76 |
|
---|
| 77 | List<int> rowsList = rows.ToList();
|
---|
| 78 | double[,] matrix = new double[rowsList.Count, numBinaryColumns];
|
---|
| 79 |
|
---|
| 80 | int col = 0;
|
---|
| 81 | foreach (var kvp in factorVariables) {
|
---|
| 82 | var varName = kvp.Key;
|
---|
| 83 | var cats = kvp.Value;
|
---|
| 84 | if (!cats.Any()) continue;
|
---|
| 85 | foreach (var cat in cats) {
|
---|
| 86 | var values = dataset.GetStringValues(varName, rows);
|
---|
| 87 | int row = 0;
|
---|
| 88 | foreach (var value in values) {
|
---|
| 89 | matrix[row, col] = value == cat ? 1 : 0;
|
---|
| 90 | row++;
|
---|
| 91 | }
|
---|
| 92 | col++;
|
---|
| 93 | }
|
---|
| 94 | }
|
---|
| 95 | return matrix;
|
---|
| 96 | }
|
---|
| 97 |
|
---|
| 98 | public static IEnumerable<KeyValuePair<string, IEnumerable<string>>> GetFactorVariableValues(
|
---|
| 99 | this IDataset ds, IEnumerable<string> factorVariables, IEnumerable<int> rows) {
|
---|
| 100 | return from factor in factorVariables
|
---|
| 101 | let distinctValues = ds.GetStringValues(factor, rows).Distinct().ToArray()
|
---|
| 102 | // 1 distinct value => skip (constant)
|
---|
| 103 | // 2 distinct values => only take one of the two values
|
---|
| 104 | // >=3 distinct values => create a binary value for each value
|
---|
| 105 | let reducedValues = distinctValues.Length <= 2
|
---|
| 106 | ? distinctValues.Take(distinctValues.Length - 1)
|
---|
| 107 | : distinctValues
|
---|
| 108 | select new KeyValuePair<string, IEnumerable<string>>(factor, reducedValues);
|
---|
| 109 | }
|
---|
[7154] | 110 | }
|
---|
| 111 | }
|
---|