1 | using System;
|
---|
2 | using System.Collections.Generic;
|
---|
3 | using System.Linq;
|
---|
4 |
|
---|
5 | using HeuristicLab.Common;
|
---|
6 | using HeuristicLab.Core;
|
---|
7 | using HeuristicLab.Data;
|
---|
8 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
9 | using HeuristicLab.Parameters;
|
---|
10 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
11 | using HeuristicLab.Random;
|
---|
12 | using static HeuristicLab.Problems.DataAnalysis.Symbolic.SymbolicExpressionHashExtensions;
|
---|
13 |
|
---|
14 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
|
---|
15 | [Item("DiversityCrossover", "Simple crossover operator prioritizing internal nodes according to the given probability.")]
|
---|
16 | [StorableClass]
|
---|
17 | public sealed class SymbolicDataAnalysisExpressionDiversityPreservingCrossover<T> : SymbolicDataAnalysisExpressionCrossover<T> where T : class, IDataAnalysisProblemData {
|
---|
18 |
|
---|
19 | private const string InternalCrossoverPointProbabilityParameterName = "InternalCrossoverPointProbability";
|
---|
20 | private const string WindowingParameterName = "Windowing";
|
---|
21 | private const string ProportionalSamplingParameterName = "ProportionalSampling";
|
---|
22 |
|
---|
23 | private static readonly Func<byte[], ulong> hashFunction = HashUtil.JSHash;
|
---|
24 |
|
---|
25 | #region Parameter Properties
|
---|
26 | public IValueLookupParameter<PercentValue> InternalCrossoverPointProbabilityParameter {
|
---|
27 | get { return (IValueLookupParameter<PercentValue>)Parameters[InternalCrossoverPointProbabilityParameterName]; }
|
---|
28 | }
|
---|
29 |
|
---|
30 | public IValueLookupParameter<BoolValue> WindowingParameter {
|
---|
31 | get { return (IValueLookupParameter<BoolValue>)Parameters[WindowingParameterName]; }
|
---|
32 | }
|
---|
33 |
|
---|
34 | public IValueLookupParameter<BoolValue> ProportionalSamplingParameter {
|
---|
35 | get { return (IValueLookupParameter<BoolValue>)Parameters[ProportionalSamplingParameterName]; }
|
---|
36 | }
|
---|
37 | #endregion
|
---|
38 |
|
---|
39 | #region Properties
|
---|
40 | public PercentValue InternalCrossoverPointProbability {
|
---|
41 | get { return InternalCrossoverPointProbabilityParameter.ActualValue; }
|
---|
42 | }
|
---|
43 |
|
---|
44 | public BoolValue Windowing {
|
---|
45 | get { return WindowingParameter.ActualValue; }
|
---|
46 | }
|
---|
47 |
|
---|
48 | public BoolValue ProportionalSampling {
|
---|
49 | get { return ProportionalSamplingParameter.ActualValue; }
|
---|
50 | }
|
---|
51 | #endregion
|
---|
52 |
|
---|
53 | public SymbolicDataAnalysisExpressionDiversityPreservingCrossover() {
|
---|
54 | name = "DiversityCrossover";
|
---|
55 | Parameters.Add(new ValueLookupParameter<PercentValue>(InternalCrossoverPointProbabilityParameterName, "The probability to select an internal crossover point (instead of a leaf node).", new PercentValue(0.9)));
|
---|
56 | Parameters.Add(new ValueLookupParameter<BoolValue>(WindowingParameterName, "Use proportional sampling with windowing for cutpoint selection.", new BoolValue(false)));
|
---|
57 | Parameters.Add(new ValueLookupParameter<BoolValue>(ProportionalSamplingParameterName, "Select cutpoints proportionally using probabilities as weights instead of randomly.", new BoolValue(true)));
|
---|
58 | }
|
---|
59 |
|
---|
60 | private SymbolicDataAnalysisExpressionDiversityPreservingCrossover(SymbolicDataAnalysisExpressionDiversityPreservingCrossover<T> original, Cloner cloner) : base(original, cloner) {
|
---|
61 | }
|
---|
62 |
|
---|
63 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
64 | return new SymbolicDataAnalysisExpressionDiversityPreservingCrossover<T>(this, cloner);
|
---|
65 | }
|
---|
66 |
|
---|
67 | [StorableConstructor]
|
---|
68 | private SymbolicDataAnalysisExpressionDiversityPreservingCrossover(bool deserializing) : base(deserializing) { }
|
---|
69 |
|
---|
70 | private static ISymbolicExpressionTreeNode ActualRoot(ISymbolicExpressionTree tree) {
|
---|
71 | return tree.Root.GetSubtree(0).GetSubtree(0);
|
---|
72 | }
|
---|
73 |
|
---|
74 | public static ISymbolicExpressionTree Cross(IRandom random, ISymbolicExpressionTree parent0, ISymbolicExpressionTree parent1, double internalCrossoverPointProbability, int maxLength, int maxDepth, bool windowing, bool proportionalSampling = false) {
|
---|
75 | var leafCrossoverPointProbability = 1 - internalCrossoverPointProbability;
|
---|
76 |
|
---|
77 | var nodes0 = ActualRoot(parent0).MakeNodes().Sort(hashFunction);
|
---|
78 | var nodes1 = ActualRoot(parent1).MakeNodes().Sort(hashFunction);
|
---|
79 |
|
---|
80 | IList<HashNode<ISymbolicExpressionTreeNode>> sampled0;
|
---|
81 | IList<HashNode<ISymbolicExpressionTreeNode>> sampled1;
|
---|
82 |
|
---|
83 | if (proportionalSampling) {
|
---|
84 | var p = internalCrossoverPointProbability;
|
---|
85 | var weights0 = nodes0.Select(x => x.IsLeaf ? 1 - p : p);
|
---|
86 | sampled0 = nodes0.SampleProportionalWithoutRepetition(random, nodes0.Length, weights0, windowing: windowing).ToArray();
|
---|
87 |
|
---|
88 | var weights1 = nodes1.Select(x => x.IsLeaf ? 1 - p : p);
|
---|
89 | sampled1 = nodes1.SampleProportionalWithoutRepetition(random, nodes1.Length, weights1, windowing: windowing).ToArray();
|
---|
90 | } else {
|
---|
91 | sampled0 = ChooseNodes(random, nodes0, internalCrossoverPointProbability).ShuffleInPlace(random);
|
---|
92 | sampled1 = ChooseNodes(random, nodes1, internalCrossoverPointProbability).ShuffleInPlace(random);
|
---|
93 | }
|
---|
94 |
|
---|
95 | foreach (var selected in sampled0) {
|
---|
96 | var cutpoint = new CutPoint(selected.Data.Parent, selected.Data);
|
---|
97 |
|
---|
98 | var maxAllowedDepth = maxDepth - parent0.Root.GetBranchLevel(selected.Data);
|
---|
99 | var maxAllowedLength = maxLength - (parent0.Length - selected.Data.GetLength());
|
---|
100 |
|
---|
101 | foreach (var candidate in sampled1) {
|
---|
102 | if (candidate.CalculatedHashValue == selected.CalculatedHashValue
|
---|
103 | || candidate.Data.GetDepth() > maxAllowedDepth
|
---|
104 | || candidate.Data.GetLength() > maxAllowedLength
|
---|
105 | || !cutpoint.IsMatchingPointType(candidate.Data)) {
|
---|
106 | continue;
|
---|
107 | }
|
---|
108 |
|
---|
109 | Swap(cutpoint, candidate.Data);
|
---|
110 | return parent0;
|
---|
111 | }
|
---|
112 | }
|
---|
113 | return parent0;
|
---|
114 | }
|
---|
115 |
|
---|
116 | public override ISymbolicExpressionTree Crossover(IRandom random, ISymbolicExpressionTree parent0, ISymbolicExpressionTree parent1) {
|
---|
117 | if (this.ExecutionContext == null) {
|
---|
118 | throw new InvalidOperationException("ExecutionContext not set.");
|
---|
119 | }
|
---|
120 |
|
---|
121 | var maxDepth = MaximumSymbolicExpressionTreeDepth.Value;
|
---|
122 | var maxLength = MaximumSymbolicExpressionTreeLength.Value;
|
---|
123 |
|
---|
124 | var internalCrossoverPointProbability = InternalCrossoverPointProbability.Value;
|
---|
125 | var windowing = Windowing.Value;
|
---|
126 | var proportionalSampling = ProportionalSampling.Value;
|
---|
127 |
|
---|
128 | return Cross(random, parent0, parent1, internalCrossoverPointProbability, maxLength, maxDepth, windowing, proportionalSampling);
|
---|
129 | }
|
---|
130 |
|
---|
131 | private static List<HashNode<ISymbolicExpressionTreeNode>> ChooseNodes(IRandom random, IEnumerable<HashNode<ISymbolicExpressionTreeNode>> nodes, double internalCrossoverPointProbability) {
|
---|
132 | var list = new List<HashNode<ISymbolicExpressionTreeNode>>();
|
---|
133 |
|
---|
134 | var chooseInternal = random.NextDouble() < internalCrossoverPointProbability;
|
---|
135 |
|
---|
136 | if (chooseInternal) {
|
---|
137 | list.AddRange(nodes.Where(x => !x.IsLeaf && x.Data.Parent != null));
|
---|
138 | }
|
---|
139 | if (!chooseInternal || list.Count == 0) {
|
---|
140 | list.AddRange(nodes.Where(x => x.IsLeaf && x.Data.Parent != null));
|
---|
141 | }
|
---|
142 |
|
---|
143 | return list;
|
---|
144 | }
|
---|
145 | }
|
---|
146 | }
|
---|