1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Encodings.RealVectorEncoding;
|
---|
28 | using HeuristicLab.Optimization;
|
---|
29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
30 |
|
---|
31 | namespace HeuristicLab.Problems.TestFunctions.MultiObjective {
|
---|
32 | [Item("Fonseca", "Fonseca and Flemming function from // https://en.wikipedia.org/wiki/Test_functions_for_optimization [30.11.2015]")]
|
---|
33 | [StorableClass]
|
---|
34 | public class Fonseca : MultiObjectiveTestFunction {
|
---|
35 | protected override double[,] GetBounds(int objectives) {
|
---|
36 | return new double[,] { { -4, 4 } };
|
---|
37 | }
|
---|
38 |
|
---|
39 | protected override bool[] GetMaximization(int objecitves) {
|
---|
40 | return new bool[2];
|
---|
41 | }
|
---|
42 |
|
---|
43 | protected override IEnumerable<double[]> GetOptimalParetoFront(int objectives) {
|
---|
44 | return ParetoFrontStore.GetParetoFront("Misc.ParetoFronts." + this.ItemName);
|
---|
45 | }
|
---|
46 |
|
---|
47 | protected override double GetBestKnownHypervolume(int objectives) {
|
---|
48 | return HypervolumeCalculator.CalculateHypervolume(GetOptimalParetoFront(objectives).ToArray(), GetReferencePoint(objectives), GetMaximization(objectives));
|
---|
49 | }
|
---|
50 |
|
---|
51 | protected override double[] GetReferencePoint(int objectives) {
|
---|
52 | return new double[] { 11, 11 };
|
---|
53 | }
|
---|
54 |
|
---|
55 | [StorableConstructor]
|
---|
56 | protected Fonseca(bool deserializing) : base(deserializing) { }
|
---|
57 | protected Fonseca(Fonseca original, Cloner cloner) : base(original, cloner) { }
|
---|
58 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
59 | return new Fonseca(this, cloner);
|
---|
60 | }
|
---|
61 | public Fonseca() : base(minimumObjectives: 2, maximumObjectives: 2, minimumSolutionLength: 1, maximumSolutionLength: int.MaxValue) { }
|
---|
62 |
|
---|
63 |
|
---|
64 | public override double[] Evaluate(RealVector r, int objectives) {
|
---|
65 | if (objectives != 2) throw new ArgumentException("The Fonseca problem must always have 2 objectives");
|
---|
66 | double f0 = 0.0, aux = 1.0 / Math.Sqrt(r.Length);
|
---|
67 |
|
---|
68 | //objective1
|
---|
69 | for (var i = 0; i < r.Length; i++) {
|
---|
70 | var d = r[i] - aux;
|
---|
71 | f0 += d * d;
|
---|
72 | }
|
---|
73 | f0 = 1 - Math.Exp(-f0);
|
---|
74 |
|
---|
75 | //objective2
|
---|
76 | var f1 = 0.0;
|
---|
77 | for (var i = 0; i < r.Length; i++) {
|
---|
78 | var d = r[i] + aux;
|
---|
79 | f1 += d * d;
|
---|
80 | }
|
---|
81 | f1 = 1 - Math.Exp(-f1);
|
---|
82 |
|
---|
83 | double[] res = { f0, f1 };
|
---|
84 | return res;
|
---|
85 | }
|
---|
86 |
|
---|
87 | }
|
---|
88 | }
|
---|