[13672] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[15583] | 3 | * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[13672] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
[14044] | 21 |
|
---|
[13672] | 22 | using System.Linq;
|
---|
| 23 | using HeuristicLab.Common;
|
---|
[13725] | 24 | using HeuristicLab.Core;
|
---|
[16310] | 25 | using HeuristicLab.Data;
|
---|
[13672] | 26 | using HeuristicLab.Encodings.RealVectorEncoding;
|
---|
| 27 | using HeuristicLab.Optimization;
|
---|
[14044] | 28 | using HeuristicLab.Parameters;
|
---|
[13725] | 29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
[13672] | 30 |
|
---|
[14111] | 31 | namespace HeuristicLab.Problems.TestFunctions.MultiObjective {
|
---|
[13725] | 32 | [StorableClass]
|
---|
| 33 | [Item("ScatterPlotAnalyzer", "Creates a Scatterplot for the current and the best known front (see Multi-Objective Performance Metrics - Shodhganga for more information)")]
|
---|
| 34 | public class ScatterPlotAnalyzer : MOTFAnalyzer {
|
---|
[13672] | 35 |
|
---|
[16310] | 36 | public IScopeTreeLookupParameter<RealVector> IndividualsParameter => (IScopeTreeLookupParameter<RealVector>)Parameters["Individuals"];
|
---|
[14044] | 37 |
|
---|
[16310] | 38 | public IResultParameter<ParetoFrontScatterPlot> ScatterPlotResultParameter => (IResultParameter<ParetoFrontScatterPlot>)Parameters["Scatterplot"];
|
---|
[14097] | 39 |
|
---|
[13725] | 40 | [StorableConstructor]
|
---|
| 41 | protected ScatterPlotAnalyzer(bool deserializing) : base(deserializing) { }
|
---|
[14044] | 42 | protected ScatterPlotAnalyzer(ScatterPlotAnalyzer original, Cloner cloner) : base(original, cloner) { }
|
---|
[13672] | 43 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 44 | return new ScatterPlotAnalyzer(this, cloner);
|
---|
| 45 | }
|
---|
[13725] | 46 |
|
---|
[14044] | 47 | public ScatterPlotAnalyzer() {
|
---|
| 48 | Parameters.Add(new ScopeTreeLookupParameter<RealVector>("Individuals", "The individual solutions to the problem"));
|
---|
[15203] | 49 | Parameters.Add(new ResultParameter<ParetoFrontScatterPlot>("Scatterplot", "The scatterplot for the current and optimal (if known front)"));
|
---|
[14044] | 50 | }
|
---|
[13672] | 51 |
|
---|
[14044] | 52 | public override IOperation Apply() {
|
---|
| 53 | var qualities = QualitiesParameter.ActualValue;
|
---|
[15203] | 54 | var individuals = IndividualsParameter.ActualValue;
|
---|
[14044] | 55 | var testFunction = TestFunctionParameter.ActualValue;
|
---|
[16310] | 56 | var objectives = qualities.Length != 0 ? qualities[0].Length:0;
|
---|
| 57 | var problemSize = individuals.Length != 0 ? individuals[0].Length:0;
|
---|
[13672] | 58 |
|
---|
[16310] | 59 | var optimalFront = new double[0][];
|
---|
| 60 | if (testFunction != null) {
|
---|
| 61 | var front = testFunction.OptimalParetoFront(objectives);
|
---|
| 62 | if (front != null) optimalFront = front.ToArray();
|
---|
| 63 | }
|
---|
| 64 | else {
|
---|
| 65 | var mat = BestKnownFrontParameter.ActualValue;
|
---|
| 66 | optimalFront = mat == null ? null : Enumerable.Range(0, mat.Rows).Select(r => Enumerable.Range(0, mat.Columns).Select(c => mat[r, c]).ToArray()).ToArray();
|
---|
| 67 | }
|
---|
[14044] | 68 |
|
---|
| 69 | var qualityClones = qualities.Select(s => s.ToArray()).ToArray();
|
---|
| 70 | var solutionClones = individuals.Select(s => s.ToArray()).ToArray();
|
---|
| 71 |
|
---|
[15203] | 72 | ScatterPlotResultParameter.ActualValue = new ParetoFrontScatterPlot(qualityClones, solutionClones, optimalFront, objectives, problemSize);
|
---|
[14044] | 73 | return base.Apply();
|
---|
[13672] | 74 | }
|
---|
| 75 | }
|
---|
| 76 | }
|
---|