1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 | using System;
|
---|
22 | using System.Collections.Generic;
|
---|
23 | using System.Linq;
|
---|
24 | using HeuristicLab.Common;
|
---|
25 |
|
---|
26 | namespace HeuristicLab.Optimization {
|
---|
27 |
|
---|
28 | /// <summary>
|
---|
29 | /// SpacingCalculator is defined as the standarddeviation of all d[i]
|
---|
30 | /// where d[i] is the minimum eukildean distance any point i has
|
---|
31 | /// to all OTHER points in the same front
|
---|
32 | /// </summary>
|
---|
33 | public static class SpacingCalculator {
|
---|
34 |
|
---|
35 | public static double CalculateSpacing<TP>(IEnumerable<TP> qualities) where TP: IReadOnlyList<double> {
|
---|
36 | if (qualities == null) throw new ArgumentNullException(nameof(qualities));
|
---|
37 | var l = qualities.ToList();
|
---|
38 | if (l.Count == 0) throw new ArgumentException("Front must not be empty.");
|
---|
39 | if (l.Count == 1) return 0;
|
---|
40 |
|
---|
41 | var mat = l.ToMatrix();
|
---|
42 | alglib.kdtreebuild(mat, mat.GetLength(0), mat.GetLength(1), 0, 2, out var tree);
|
---|
43 | var summand = new double[2];
|
---|
44 | var dists = new List<double>();
|
---|
45 | foreach (var point in l) {
|
---|
46 | alglib.kdtreequeryknn(tree, point.ToArray(), 2, true);
|
---|
47 | alglib.kdtreequeryresultsdistances(tree, ref summand);
|
---|
48 | dists.Add(summand[1]);
|
---|
49 | }
|
---|
50 | return dists.StandardDeviationPop();
|
---|
51 | }
|
---|
52 | }
|
---|
53 | }
|
---|