1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.Encodings.IntegerVectorEncoding;
|
---|
29 | using HeuristicLab.Operators;
|
---|
30 | using HeuristicLab.Optimization;
|
---|
31 | using HeuristicLab.Parameters;
|
---|
32 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
33 | using HeuristicLab.Random;
|
---|
34 | using HEAL.Attic;
|
---|
35 |
|
---|
36 | namespace HeuristicLab.Problems.GeneralizedQuadraticAssignment {
|
---|
37 | /// <summary>
|
---|
38 | /// This is an implementation of the algorithm described in Mateus, G.R., Resende, M.G.C. & Silva, R.M.A. J Heuristics (2011) 17: 527. https://doi.org/10.1007/s10732-010-9144-0
|
---|
39 | /// </summary>
|
---|
40 | [Item("ApproximateLocalSearch", "The approximate local search is described in Mateus, G., Resende, M., and Silva, R. 2011. GRASP with path-relinking for the generalized quadratic assignment problem. Journal of Heuristics 17, Springer Netherlands, pp. 527-565.")]
|
---|
41 | [StorableType("58C75FBC-C586-4048-A60B-DCF967CB2E33")]
|
---|
42 | public class ApproximateLocalSearch : SingleSuccessorOperator, IProblemInstanceAwareGQAPOperator,
|
---|
43 | IQualityAwareGQAPOperator, IGQAPLocalImprovementOperator, IAssignmentAwareGQAPOperator, IStochasticOperator {
|
---|
44 | public IProblem Problem { get; set; }
|
---|
45 | public Type ProblemType {
|
---|
46 | get { return typeof(GQAP); }
|
---|
47 | }
|
---|
48 |
|
---|
49 | public ILookupParameter<GQAPInstance> ProblemInstanceParameter {
|
---|
50 | get { return (ILookupParameter<GQAPInstance>)Parameters["ProblemInstance"]; }
|
---|
51 | }
|
---|
52 | public ILookupParameter<IntegerVector> AssignmentParameter {
|
---|
53 | get { return (ILookupParameter<IntegerVector>)Parameters["Assignment"]; }
|
---|
54 | }
|
---|
55 | public ILookupParameter<DoubleValue> QualityParameter {
|
---|
56 | get { return (ILookupParameter<DoubleValue>)Parameters["Quality"]; }
|
---|
57 | }
|
---|
58 | public ILookupParameter<Evaluation> EvaluationParameter {
|
---|
59 | get { return (ILookupParameter<Evaluation>)Parameters["Evaluation"]; }
|
---|
60 | }
|
---|
61 | public IValueLookupParameter<IntValue> MaximumIterationsParameter {
|
---|
62 | get { return (IValueLookupParameter<IntValue>)Parameters["MaximumIterations"]; }
|
---|
63 | }
|
---|
64 | public ILookupParameter<IntValue> EvaluatedSolutionsParameter {
|
---|
65 | get { return (ILookupParameter<IntValue>)Parameters["EvaluatedSolutions"]; }
|
---|
66 | }
|
---|
67 | public ILookupParameter<IRandom> RandomParameter {
|
---|
68 | get { return (ILookupParameter<IRandom>)Parameters["Random"]; }
|
---|
69 | }
|
---|
70 | public IValueLookupParameter<IntValue> MaximumCandidateListSizeParameter {
|
---|
71 | get { return (IValueLookupParameter<IntValue>)Parameters["MaximumCandidateListSize"]; }
|
---|
72 | }
|
---|
73 | public IValueLookupParameter<PercentValue> OneMoveProbabilityParameter {
|
---|
74 | get { return (IValueLookupParameter<PercentValue>)Parameters["OneMoveProbability"]; }
|
---|
75 | }
|
---|
76 | public ILookupParameter<ResultCollection> ResultsParameter {
|
---|
77 | get { return (ILookupParameter<ResultCollection>)Parameters["Results"]; }
|
---|
78 | }
|
---|
79 | public IValueLookupParameter<BoolValue> GreedyParameter {
|
---|
80 | get { return (IValueLookupParameter<BoolValue>)Parameters["Greedy"]; }
|
---|
81 | }
|
---|
82 |
|
---|
83 | [StorableConstructor]
|
---|
84 | protected ApproximateLocalSearch(StorableConstructorFlag _) : base(_) { }
|
---|
85 | protected ApproximateLocalSearch(ApproximateLocalSearch original, Cloner cloner) : base(original, cloner) { }
|
---|
86 | public ApproximateLocalSearch()
|
---|
87 | : base() {
|
---|
88 | Parameters.Add(new LookupParameter<GQAPInstance>("ProblemInstance", GQAP.ProblemInstanceDescription));
|
---|
89 | Parameters.Add(new LookupParameter<IntegerVector>("Assignment", GQAPSolutionCreator.AssignmentDescription));
|
---|
90 | Parameters.Add(new LookupParameter<DoubleValue>("Quality", ""));
|
---|
91 | Parameters.Add(new LookupParameter<Evaluation>("Evaluation", GQAP.EvaluationDescription));
|
---|
92 | Parameters.Add(new ValueLookupParameter<IntValue>("MaximumIterations", "The maximum number of iterations that should be performed."));
|
---|
93 | Parameters.Add(new LookupParameter<IntValue>("EvaluatedSolutions", "The number of evaluated solution equivalents."));
|
---|
94 | Parameters.Add(new LookupParameter<IRandom>("Random", "The random number generator to use."));
|
---|
95 | Parameters.Add(new ValueLookupParameter<IntValue>("MaximumCandidateListSize", "The maximum number of candidates that should be found in each step.", new IntValue(10)));
|
---|
96 | Parameters.Add(new ValueLookupParameter<PercentValue>("OneMoveProbability", "The probability for performing a 1-move, which is the opposite of performing a 2-move.", new PercentValue(.5)));
|
---|
97 | Parameters.Add(new LookupParameter<ResultCollection>("Results", "The result collection that stores the results."));
|
---|
98 | Parameters.Add(new ValueLookupParameter<BoolValue>("Greedy", "Whether to use a greedy selection strategy or a probabilistic one.", new BoolValue(true)));
|
---|
99 | }
|
---|
100 |
|
---|
101 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
102 | return new ApproximateLocalSearch(this, cloner);
|
---|
103 | }
|
---|
104 |
|
---|
105 | public static void Apply(IRandom random, GQAPSolution sol, int maxCLS,
|
---|
106 | double oneMoveProbability, int maximumIterations,
|
---|
107 | GQAPInstance problemInstance, out int evaluatedSolutions, bool greedy = true) {
|
---|
108 | var fit = problemInstance.ToSingleObjective(sol.Evaluation);
|
---|
109 | var eval = sol.Evaluation;
|
---|
110 | Apply(random, sol.Assignment, ref fit, ref eval, maxCLS, oneMoveProbability, maximumIterations, problemInstance,
|
---|
111 | out evaluatedSolutions, greedy);
|
---|
112 | sol.Evaluation = eval;
|
---|
113 | }
|
---|
114 |
|
---|
115 | /// <summary>
|
---|
116 | /// </summary>
|
---|
117 | /// <param name="random">The random number generator to use.</param>
|
---|
118 | /// <param name="assignment">The equipment-location assignment vector.</param>
|
---|
119 | /// <param name="quality">The solution quality.</param>
|
---|
120 | /// <param name="evaluation">The evaluation result of the solution.</param>
|
---|
121 | /// <param name="maxCLS">The maximum number of candidates that should be found in each step.</param>
|
---|
122 | /// <param name="oneMoveProbability">The probability for performing a 1-move, which is the opposite of performing a 2-move.</param>
|
---|
123 | /// <param name="maximumIterations">The maximum number of iterations that should be performed each time the candidate list is generated.</param>
|
---|
124 | /// <param name="problemInstance">The problem instance that contains the data.</param>
|
---|
125 | /// <param name="evaluatedSolutions">The number of evaluated solutions.</param>
|
---|
126 | /// <param name="greedy">Greedy selection performed better in 5 of 8 instances according to the paper</param>
|
---|
127 | public static void Apply(IRandom random, IntegerVector assignment,
|
---|
128 | ref double quality, ref Evaluation evaluation, int maxCLS,
|
---|
129 | double oneMoveProbability, int maximumIterations,
|
---|
130 | GQAPInstance problemInstance, out int evaluatedSolutions, bool greedy = true) {
|
---|
131 | evaluatedSolutions = 0;
|
---|
132 | var capacities = problemInstance.Capacities;
|
---|
133 | var demands = problemInstance.Demands;
|
---|
134 | var evaluations = 0.0;
|
---|
135 | var deltaEvaluationFactor = 1.0 / assignment.Length;
|
---|
136 | while (true) { // line 1 of Algorithm 3
|
---|
137 | var count = 0; // line 2 of Algorithm 3
|
---|
138 | var CLS = new List<Tuple<NMove, double, Evaluation>>(); // line 3 of Algorithm 3
|
---|
139 | do {
|
---|
140 | var move = Move(random, assignment, oneMoveProbability, capacities); // line 4 of Algorithm 3
|
---|
141 |
|
---|
142 | var moveEval = GQAPNMoveEvaluator.Evaluate(move, assignment, evaluation, problemInstance);
|
---|
143 | evaluations += move.Indices.Count * deltaEvaluationFactor;
|
---|
144 | double moveQuality = problemInstance.ToSingleObjective(moveEval);
|
---|
145 |
|
---|
146 | if (moveEval.ExcessDemand <= 0.0 && moveQuality < quality) { // line 5 of Algorithm 3
|
---|
147 | CLS.Add(Tuple.Create(move, moveQuality, moveEval)); // line 6 of Algorithm 3
|
---|
148 | }
|
---|
149 | count++; // line 8 of Algorithm 3
|
---|
150 | } while (CLS.Count < maxCLS && count < maximumIterations); // line 9 of Algorithm 3
|
---|
151 |
|
---|
152 | if (CLS.Count == 0) { // line 10 of Algorithm 3
|
---|
153 | evaluatedSolutions += (int)Math.Ceiling(evaluations);
|
---|
154 | return; // END
|
---|
155 | } else {
|
---|
156 | // line 11 of Algorithm 3
|
---|
157 | Tuple<NMove, double, Evaluation> selected;
|
---|
158 | if (greedy) {
|
---|
159 | selected = CLS.MinItems(x => x.Item2).Shuffle(random).First();
|
---|
160 | } else {
|
---|
161 | selected = CLS.SampleProportional(random, 1, CLS.Select(x => 1.0 / x.Item2), false, false).Single();
|
---|
162 | }
|
---|
163 | NMoveMaker.Apply(assignment, selected.Item1);
|
---|
164 | quality = selected.Item2;
|
---|
165 | evaluation = selected.Item3;
|
---|
166 | }
|
---|
167 | }
|
---|
168 | }
|
---|
169 |
|
---|
170 | private static NMove Move(IRandom random, IntegerVector assignment, double oneMoveProbability, DoubleArray capacities) {
|
---|
171 | if (random.NextDouble() < oneMoveProbability)
|
---|
172 | return StochasticNMoveSingleMoveGenerator.GenerateOneMove(random, assignment, capacities);
|
---|
173 | return StochasticNMoveSingleMoveGenerator.GenerateTwoMove(random, assignment, capacities);
|
---|
174 | }
|
---|
175 |
|
---|
176 | public override IOperation Apply() {
|
---|
177 | var evaluation = EvaluationParameter.ActualValue;
|
---|
178 | var quality = QualityParameter.ActualValue;
|
---|
179 | var fit = quality.Value;
|
---|
180 | var evaluatedSolutions = 0;
|
---|
181 |
|
---|
182 | Apply(RandomParameter.ActualValue,
|
---|
183 | AssignmentParameter.ActualValue,
|
---|
184 | ref fit,
|
---|
185 | ref evaluation,
|
---|
186 | MaximumCandidateListSizeParameter.ActualValue.Value,
|
---|
187 | OneMoveProbabilityParameter.ActualValue.Value,
|
---|
188 | MaximumIterationsParameter.ActualValue.Value,
|
---|
189 | ProblemInstanceParameter.ActualValue,
|
---|
190 | out evaluatedSolutions,
|
---|
191 | GreedyParameter.ActualValue.Value);
|
---|
192 |
|
---|
193 | EvaluationParameter.ActualValue = evaluation;
|
---|
194 | quality.Value = fit;
|
---|
195 | EvaluatedSolutionsParameter.ActualValue.Value += evaluatedSolutions;
|
---|
196 | return base.Apply();
|
---|
197 | }
|
---|
198 | }
|
---|
199 | }
|
---|