1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.Encodings.IntegerVectorEncoding;
|
---|
29 | using HeuristicLab.Parameters;
|
---|
30 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
31 | using HeuristicLab.Random;
|
---|
32 | using HEAL.Attic;
|
---|
33 |
|
---|
34 | namespace HeuristicLab.Problems.GeneralizedQuadraticAssignment {
|
---|
35 | /// <summary>
|
---|
36 | /// This is an implementation of the algorithm described in Mateus, G.R., Resende, M.G.C. & Silva, R.M.A. J Heuristics (2011) 17: 527. https://doi.org/10.1007/s10732-010-9144-0
|
---|
37 | /// </summary>
|
---|
38 | [Item("GQAPPathRelinking", "Operator that performs path relinking between two solutions. It is described in Mateus, G., Resende, M., and Silva, R. 2011. GRASP with path-relinking for the generalized quadratic assignment problem. Journal of Heuristics 17, Springer Netherlands, pp. 527-565.")]
|
---|
39 | [StorableType("FAE65A24-AE6D-49DD-8A8C-6574D5304E08")]
|
---|
40 | public class GQAPPathRelinking : GQAPCrossover, IQualitiesAwareGQAPOperator {
|
---|
41 |
|
---|
42 | public IScopeTreeLookupParameter<DoubleValue> QualityParameter {
|
---|
43 | get { return (IScopeTreeLookupParameter<DoubleValue>)Parameters["Quality"]; }
|
---|
44 | }
|
---|
45 | public IScopeTreeLookupParameter<Evaluation> EvaluationParameter {
|
---|
46 | get { return (IScopeTreeLookupParameter<Evaluation>)Parameters["Evaluation"]; }
|
---|
47 | }
|
---|
48 | public IValueParameter<PercentValue> CandidateSizeFactorParameter {
|
---|
49 | get { return (IValueParameter<PercentValue>)Parameters["CandidateSizeFactor"]; }
|
---|
50 | }
|
---|
51 | public IValueLookupParameter<BoolValue> GreedyParameter {
|
---|
52 | get { return (IValueLookupParameter<BoolValue>)Parameters["Greedy"]; }
|
---|
53 | }
|
---|
54 |
|
---|
55 | [StorableConstructor]
|
---|
56 | protected GQAPPathRelinking(StorableConstructorFlag _) : base(_) { }
|
---|
57 | protected GQAPPathRelinking(GQAPPathRelinking original, Cloner cloner) : base(original, cloner) { }
|
---|
58 | public GQAPPathRelinking()
|
---|
59 | : base() {
|
---|
60 | Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>("Quality", ""));
|
---|
61 | Parameters.Add(new ScopeTreeLookupParameter<Evaluation>("Evaluation", GQAP.EvaluationDescription));
|
---|
62 | Parameters.Add(new ValueParameter<PercentValue>("CandidateSizeFactor", "(η) Determines the size of the set of feasible moves in each path-relinking step relative to the maximum size. A value of 50% means that only half of all possible moves are considered each step.", new PercentValue(0.5)));
|
---|
63 | Parameters.Add(new ValueLookupParameter<BoolValue>("Greedy", "Whether to use a greedy selection strategy or a probabilistic one.", new BoolValue(true)));
|
---|
64 | }
|
---|
65 |
|
---|
66 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
67 | return new GQAPPathRelinking(this, cloner);
|
---|
68 | }
|
---|
69 |
|
---|
70 | public static GQAPSolution Apply(IRandom random,
|
---|
71 | IntegerVector source, Evaluation sourceEval,
|
---|
72 | IntegerVector target, Evaluation targetEval,
|
---|
73 | GQAPInstance problemInstance, double candidateSizeFactor,
|
---|
74 | out int evaluatedSolutions, bool greedy = true) {
|
---|
75 | evaluatedSolutions = 0;
|
---|
76 | var demands = problemInstance.Demands;
|
---|
77 | var capacities = problemInstance.Capacities;
|
---|
78 | var cmp = new IntegerVectorEqualityComparer();
|
---|
79 |
|
---|
80 | var sFit = problemInstance.ToSingleObjective(sourceEval);
|
---|
81 | var tFit = problemInstance.ToSingleObjective(targetEval);
|
---|
82 | GQAPSolution pi_star = sFit < tFit
|
---|
83 | ? new GQAPSolution((IntegerVector)source.Clone(), (Evaluation)sourceEval.Clone())
|
---|
84 | : new GQAPSolution((IntegerVector)target.Clone(), (Evaluation)targetEval.Clone()); // line 1 of Algorithm 4
|
---|
85 | double pi_star_Fit = problemInstance.ToSingleObjective(pi_star.Evaluation); // line 2 of Algorithm 4
|
---|
86 |
|
---|
87 | var pi_prime = (IntegerVector)source.Clone(); // line 3 of Algorithm 4
|
---|
88 | //var fix = new bool[demands.Length]; // line 3 of Algorithm 4, note that according to the description it is not necessary to track the fixed equipments
|
---|
89 | var nonFix = Enumerable.Range(0, demands.Length).ToList(); // line 3 of Algorithm 4
|
---|
90 | var phi = new List<int>(IntegerVectorEqualityComparer.GetDifferingIndices(pi_prime, target)); // line 4 of Algorithm 4
|
---|
91 |
|
---|
92 | var B = new List<GQAPSolution>((int)Math.Ceiling(phi.Count * candidateSizeFactor));
|
---|
93 | var B_fit = new List<double>(B.Capacity);
|
---|
94 | while (phi.Count > 0) { // line 5 of Algorithm 4
|
---|
95 | B.Clear(); // line 6 of Algorithm 4
|
---|
96 | B_fit.Clear(); // line 6 of Algorithm 4 (B is split into two synchronized lists)
|
---|
97 | foreach (var v in phi) { // line 7 of Algorithm 4
|
---|
98 | int oldLocation = pi_prime[v];
|
---|
99 | pi_prime[v] = target[v]; // line 8 of Algorithm 4
|
---|
100 | var pi_dash = MakeFeasible(random, pi_prime, v, nonFix, demands, capacities); // line 9 of Algorithm 4
|
---|
101 | pi_prime[v] = oldLocation; // not mentioned in Algorithm 4, but seems reasonable
|
---|
102 |
|
---|
103 | if (problemInstance.IsFeasible(pi_dash)) { // line 10 of Algorithm 4
|
---|
104 | var pi_dash_eval = problemInstance.Evaluate(pi_dash);
|
---|
105 | evaluatedSolutions++;
|
---|
106 | var pi_dash_fit = problemInstance.ToSingleObjective(pi_dash_eval);
|
---|
107 |
|
---|
108 | if (B.Any(x => cmp.Equals(x.Assignment, pi_dash))) continue; // cond. 2 of line 12 and cond. 1 of line 16 in Algorithm 4
|
---|
109 |
|
---|
110 | if (B.Count >= candidateSizeFactor * phi.Count) { // line 11 of Algorithm 4
|
---|
111 | var replacement = B_fit.Select((val, idx) => new { Index = idx, Fitness = val })
|
---|
112 | .Where(x => x.Fitness >= pi_dash_fit) // cond. 1 in line 12 of Algorithm 4
|
---|
113 | .Select(x => new { x.Index, x.Fitness, Similarity = HammingSimilarityCalculator.CalculateSimilarity(B[x.Index].Assignment, pi_dash) })
|
---|
114 | .ToArray();
|
---|
115 | if (replacement.Length > 0) {
|
---|
116 | var mostSimilar = replacement.MaxItems(x => x.Similarity).SampleRandom(random).Index;
|
---|
117 | B[mostSimilar].Assignment = pi_dash; // line 13 of Algorithm 4
|
---|
118 | B[mostSimilar].Evaluation = pi_dash_eval; // line 13 of Algorithm 4
|
---|
119 | B_fit[mostSimilar] = pi_dash_fit; // line 13 of Algorithm 4
|
---|
120 | }
|
---|
121 | } else { // line 16, condition has been checked above already
|
---|
122 | B.Add(new GQAPSolution(pi_dash, pi_dash_eval)); // line 17 of Algorithm 4
|
---|
123 | B_fit.Add(pi_dash_fit); // line 17 of Algorithm 4
|
---|
124 | }
|
---|
125 | }
|
---|
126 | }
|
---|
127 | if (B.Count > 0) { // line 21 of Algorithm 4
|
---|
128 | GQAPSolution pi;
|
---|
129 | // line 22 of Algorithm 4
|
---|
130 | if (greedy) {
|
---|
131 | pi = B.Select((val, idx) => new { Index = idx, Value = val }).MinItems(x => B_fit[x.Index]).SampleRandom(random).Value;
|
---|
132 | } else {
|
---|
133 | pi = B.SampleProportional(random, 1, B_fit.Select(x => 1.0 / x), false).First();
|
---|
134 | }
|
---|
135 | var diff = IntegerVectorEqualityComparer.GetDifferingIndices(pi.Assignment, target); // line 23 of Algorithm 4
|
---|
136 | var I = phi.Except(diff); // line 24 of Algorithm 4
|
---|
137 | var i = I.SampleRandom(random); // line 25 of Algorithm 4
|
---|
138 | //fix[i] = true; // line 26 of Algorithm 4
|
---|
139 | nonFix.Remove(i); // line 26 of Algorithm 4
|
---|
140 | pi_prime = pi.Assignment; // line 27 of Algorithm 4
|
---|
141 | var fit = problemInstance.ToSingleObjective(pi.Evaluation);
|
---|
142 | if (fit < pi_star_Fit) { // line 28 of Algorithm 4
|
---|
143 | pi_star_Fit = fit; // line 29 of Algorithm 4
|
---|
144 | pi_star = pi; // line 30 of Algorithm 4
|
---|
145 | }
|
---|
146 | } else return pi_star;
|
---|
147 | phi = new List<int>(IntegerVectorEqualityComparer.GetDifferingIndices(pi_prime, target));
|
---|
148 | }
|
---|
149 |
|
---|
150 | return pi_star;
|
---|
151 | }
|
---|
152 |
|
---|
153 | protected override IntegerVector Cross(IRandom random, ItemArray<IntegerVector> parents,
|
---|
154 | GQAPInstance problemInstance) {
|
---|
155 |
|
---|
156 | var qualities = QualityParameter.ActualValue;
|
---|
157 | var evaluations = EvaluationParameter.ActualValue;
|
---|
158 | var betterParent = qualities[0].Value <= qualities[1].Value ? 0 : 1;
|
---|
159 | var worseParent = 1 - betterParent;
|
---|
160 | var source = parents[betterParent];
|
---|
161 | var target = parents[worseParent];
|
---|
162 |
|
---|
163 | int evaluatedSolution;
|
---|
164 | return Apply(random, source, evaluations[betterParent],
|
---|
165 | target, evaluations[worseParent], problemInstance,
|
---|
166 | CandidateSizeFactorParameter.Value.Value, out evaluatedSolution,
|
---|
167 | GreedyParameter.ActualValue.Value).Assignment;
|
---|
168 | }
|
---|
169 |
|
---|
170 | /// <summary>
|
---|
171 | /// Relocates equipments in the same location as <paramref name="equipment"/> to other locations in case the location
|
---|
172 | /// is overutilized.
|
---|
173 | /// </summary>
|
---|
174 | /// <remarks>
|
---|
175 | /// This method is performance critical, called very often and should run as fast as possible.
|
---|
176 | /// </remarks>
|
---|
177 | /// <param name="random">The random number generator.</param>
|
---|
178 | /// <param name="pi">The current solution.</param>
|
---|
179 | /// <param name="equipment">The equipment that was just assigned to a new location.</param>
|
---|
180 | /// <param name="nonFix">The equipments that have not yet been fixed.</param>
|
---|
181 | /// <param name="demands">The demands for all equipments.</param>
|
---|
182 | /// <param name="capacities">The capacities of all locations.</param>
|
---|
183 | /// <param name="maximumTries">The number of tries that should be done in relocating the equipments.</param>
|
---|
184 | /// <returns>A feasible or infeasible solution</returns>
|
---|
185 | private static IntegerVector MakeFeasible(IRandom random, IntegerVector pi, int equipment, List<int> nonFix, DoubleArray demands, DoubleArray capacities, int maximumTries = 1000) {
|
---|
186 | int l = pi[equipment];
|
---|
187 | var slack = ComputeSlack(pi, demands, capacities);
|
---|
188 | if (slack[l] >= 0) // line 1 of Algorithm 5
|
---|
189 | return (IntegerVector)pi.Clone(); // line 2 of Algorithm 5
|
---|
190 |
|
---|
191 | IntegerVector pi_prime = null;
|
---|
192 | int k = 0; // line 4 of Algorithm 5
|
---|
193 | var maxSlack = slack.Max(); // line 8-9 of Algorithm 5
|
---|
194 | var slack_prime = (double[])slack.Clone();
|
---|
195 | var maxSlack_prime = maxSlack;
|
---|
196 | // note that FTL can be computed only once for all tries as all tries restart with the same solution
|
---|
197 | var FTL = nonFix.Where(x => x != equipment && pi[x] == l && demands[x] <= maxSlack).ToList(); // line 8-9 of Algorithm 5
|
---|
198 | var FTLweight = FTL.Select(x => demands[x]).ToList();
|
---|
199 | while (k < maximumTries && slack_prime[l] < 0) { // line 5 of Algorithm 5
|
---|
200 | pi_prime = (IntegerVector)pi.Clone(); // line 6 of Algorithm 5
|
---|
201 | // set T can only shrink and not grow, thus it is created outside the loop and only updated inside
|
---|
202 | var T = new List<int>(FTL); // line 8-9 of Algorithm 5
|
---|
203 | var weightT = new List<double>(FTLweight);
|
---|
204 | do { // line 7 of Algorithm 5
|
---|
205 | if (T.Count > 0) { // line 10 of Algorithm 5
|
---|
206 | var idx = Enumerable.Range(0, T.Count).SampleProportional(random, 1, weightT, false, false).First(); // line 11 of Algorithm 5
|
---|
207 | int i = T[idx]; // line 11 of Algorithm 5
|
---|
208 | var j = Enumerable.Range(0, capacities.Length)
|
---|
209 | .Where(x => slack_prime[x] >= demands[i]) // line 12 of Algorithm 5
|
---|
210 | .SampleRandom(random); // line 13 of Algorithm 5
|
---|
211 | pi_prime[i] = j; // line 14 of Algorithm 5
|
---|
212 | T.RemoveAt(idx);
|
---|
213 | weightT.RemoveAt(idx);
|
---|
214 | var recomputeMaxSlack = slack_prime[j] == maxSlack_prime; // efficiency improvement: recompute max slack only if we assign to a location whose slack equals maxSlack
|
---|
215 | slack_prime[j] -= demands[i]; // line 14 of Algorithm 5
|
---|
216 | slack_prime[l] += demands[i]; // line 14 of Algorithm 5
|
---|
217 | if (recomputeMaxSlack) {
|
---|
218 | maxSlack_prime = slack_prime.Max();
|
---|
219 | // T needs to be removed of equipments whose demand is higher than maxSlack only if maxSlack changes
|
---|
220 | for (var h = 0; h < T.Count; h++) {
|
---|
221 | var f = T[h];
|
---|
222 | if (demands[f] > maxSlack_prime) {
|
---|
223 | T.RemoveAt(h);
|
---|
224 | weightT.RemoveAt(h);
|
---|
225 | h--;
|
---|
226 | }
|
---|
227 | }
|
---|
228 | }
|
---|
229 | } else break; // cond. 1 in line 16 of Algorithm 5
|
---|
230 | } while (slack_prime[l] < 0); // cond. 2 in line 16 of Algorithm 5
|
---|
231 | k++; // line 17 of Algorithm 5
|
---|
232 | if (slack_prime[l] < 0) {
|
---|
233 | // reset
|
---|
234 | Array.Copy(slack, slack_prime, slack.Length);
|
---|
235 | maxSlack_prime = maxSlack;
|
---|
236 | }
|
---|
237 | }
|
---|
238 | return pi_prime; // line 19-23 of Algorithm 5
|
---|
239 | }
|
---|
240 |
|
---|
241 | private static double[] ComputeSlack(IntegerVector assignment, DoubleArray demands, DoubleArray capacities) {
|
---|
242 | var slack = capacities.ToArray();
|
---|
243 | for (int i = 0; i < assignment.Length; i++) {
|
---|
244 | slack[assignment[i]] -= demands[i];
|
---|
245 | }
|
---|
246 | return slack;
|
---|
247 | }
|
---|
248 | }
|
---|
249 | }
|
---|